Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Optimum Design for the Magnification Mechanisms Employing Fuzzy Logic–ANFIS

    Ngoc Thai Huynh1, Tien V. T. Nguyen2, Quoc Manh Nguyen3,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5961-5983, 2022, DOI:10.32604/cmc.2022.029484

    Abstract To achieve high work performance for compliant mechanisms of motion scope, continuous work condition, and high frequency, we propose a new hybrid algorithm that could be applied to multi-objective optimum design. In this investigation, we use the tools of finite element analysis (FEA) for a magnification mechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements. A poly-algorithm including the Grey-Taguchi method, fuzzy logic system, and adaptive neuro-fuzzy inference system (ANFIS) algorithm, was utilized mainly in this study. The FEA outcomes indicated that… More >

  • Open Access

    ARTICLE

    A Multi-Criteria Topology Optimization for Systematic Design of Compliant Mechanisms

    Zhen Luo1,2, Nong Zhang,1,3

    CMC-Computers, Materials & Continua, Vol.28, No.1, pp. 27-56, 2012, DOI:10.3970/cmc.2012.028.027

    Abstract This paper attempts to present a new multi-criteria topological optimization methodology for the systematic design of compliant micro-mechanisms. Instead of employing only the strain energy (SE) or the functional specifications such as mechanical efficiency (ME), in this study an alternative formulation representing multiple design requirements is included in the optimization to describe the performance of compliant mechanisms. In most conventional designs, SE is used to only measure the design requirement from the point of view of structures, while ME is usually applied to describe the mechanical performance of mechanisms. However, the design of a compliant mechanism is required to comprehensively… More >

  • Open Access

    ARTICLE

    Design of Compliant Mechanisms Using Meshless Level Set Methods

    Zhen Luo1, Nong Zhang1, Tao Wu2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.4, pp. 299-328, 2012, DOI:10.3970/cmes.2012.085.299

    Abstract This paper presents a meshless Galerkin level-set method (MGLSM) for shape and topology optimization of compliant mechanisms of geometrically nonlinear structures. The design boundary of the mechanism is implicitly described as the zero level set of a Lipschitz continuous level set function of higher dimension. The moving least square (MLS) approximation is used to construct the meshless shape functions with the global Galerkin weak-form in terms of a set of arbitrarily distributed nodes. The MLS shape function is first employed to parameterize the level set function via the surface fitting rather than interpolation, and then used to implement the meshless… More >

Displaying 1-10 on page 1 of 3. Per Page  

Share Link