Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Confocal 3D Optical Intraoral Scanners and Comparison of Image Capturing Accuracy

    Pokpong Amornvit, Dinesh Rokaya, Chaimongkon Peampring, Sasiwimol Sanohkan*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 303-314, 2021, DOI:10.32604/cmc.2020.011943

    Abstract Several capture techniques are used in intraoral optical scanners in the dental market, such as Triangulation (Cerec Omnicam, Dentsply Sirona), Activewave front sampling (3M ESPE) and confocal technology (iTero, Align). The accuracy of intraoral scanners is the most significant focal point for developers to research. This in-vitro study studied the accuracy of confocal scanners launched from 2015-2020 (Trios 3, Trios 4, iTero Element; 3Shape Trios A/S, Copenhagen, Denmark, and iTero Element2, and iTero Element5D; Align Technologies, San Jose, CA, USA). A 3D printing model modified from the American National Standard No. 132 was scanned five times each scanner. Both Trios3… More >

  • Open Access

    ARTICLE

    Immunohistochemistry of GluR1 subunits of AMPA receptors of rat cerebellar nerve cells

    ORLANDO J. CASTEJÓN1*, MICHAEL E. DAILEY2

    BIOCELL, Vol.33, No.2, pp. 71-80, 2009, DOI:10.32604/biocell.2009.33.071

    Abstract The localization of GluR1 subunits of ionotropic glutamate receptors in the glial cells and inhibitory neurons of cerebellar cortex and their association with the climbing and parallel fibers, and basket cell axons were studied. Samples of P14 and P21 rat cerebellar cortex were exposed to a specific antibody against GluR1 subunit(s) of AMPA receptors and were examined with confocal laser scanning microscopy. GluR1 strong immunoreactivity was confined to Purkinje cell and the molecular layer. Weak GluR1 immunoreactivity was observed surrounding some Golgi cells in the granule cell layer. Intense GluR1 immunoreactivity was localized around Purkinje, basket, and stellate cells. Purkinje… More >

  • Open Access

    ARTICLE

    The ovary of Lagostomus maximus (Mammalia, Rodentia): an analysis by confocal microscopy

    MARÍA B. ESPINOSA2 , NICOLÁS A. FRAUNHOFFER1 , NOELIA P. LEOPARDO1 , ALFREDO D. VITULLO2 AND MIGUEL A. WILLIS1

    BIOCELL, Vol.35, No.2, pp. 37-42, 2011, DOI:10.32604/biocell.2011.35.037

    Abstract Lagostomus maximus is a notable mammalian model for reproductive studies. Females have an extremely high ovulation rate, which is due to down-regulation of the follicular apoptosis pathway, which ensures a large pool of developing follicles. This large pool is supported by the convoluted anatomy of the mature ovary, whose germinal tissue is found in irregularly curved ridges throughout the cortex. Medullary tissue is restricted to a minimum. Lyso Tracker Red reconstruction under confocal laser scanning microscopy was used to recognize and measure all follicular stages from primordial to antral. Unlike most mammals in which early primordial follicles are just found… More >

  • Open Access

    ARTICLE

    Localization and compartmentation of Al in the leaves and roots of tea plants

    Hajiboland R1,2, C Poschenrieder3

    Phyton-International Journal of Experimental Botany, Vol.84, No.1, pp. 86-100, 2015, DOI:10.32604/phyton.2015.84.086

    Abstract Under acid soil conditions, solubility of aluminum (Al) increases leading to toxicity for plants. Al accumulator species such as tea, however, accumulate high levels of Al in tissues without toxicity symptoms. In this work, Al localization and compartmentation were studied in tea [Camellia sinensis (L.) O. Kuntze] grown hydroponically at 0 or 100 µM Al for eight weeks. Plant dry matter production was significantly higher in the presence of Al and accumulated up to 1.21 and 6.18 mg Al/g DW in the leaves and roots, respectively. About 40-50% of Al was partitioned into cell wall (CW)-bound fraction without any difference… More >

  • Open Access

    ARTICLE

    Confocal laser scanning microscopy and immunohistochemistry of cerebellar Lugaro cells

    Orlando J. CASTEJÓN

    BIOCELL, Vol.37, No.2, pp. 29-36, 2013, DOI:10.32604/biocell.2013.37.029

    Abstract The present paper shows by means of confocal laser scanning microscopy the immunoreactivity of rat cerebellar Lugaro cells for calbindin, synapsin-I, PSD-95, GluR1, CaMKII alpha, and N-cadherin. Lugaro cells were easily characterized by their location beneath Purkinje cells. Calbindin revealed immunoreactivity in the cell body, and the axonal and dendritic processes. Synapsin-I labelled the presynaptic endings on Lugaro cells. Synapsin-I and PSD-95 immunoreactivity demonstrated the localization of presynaptic and postsynaptic endings surrounding cell soma, corresponding to afferent extrinsic and intrinsic cerebellar fi bers. GluR1 immunoreactivity of the soma and cell processes indicates that Lugaro cells have functional ionotropic glutamate receptors… More >

  • Open Access

    ARTICLE

    Size-Dependent Diffusion of Dextrans in Excised Porcine Corneal Stroma

    Ajith Rajapaksha1,2, Michael Fink1, Brian A. Todd1

    Molecular & Cellular Biomechanics, Vol.12, No.3, pp. 215-230, 2015, DOI:10.3970/mcb.2015.012.215

    Abstract Delivery of therapeutic agents to the eye requires efficient transport through cellular and extracellular barriers. We evaluated the rate of diffusive transport in excised porcine corneal stroma using fluorescently labeled dextran molecules with hydrodynamic radii ranging from 1.3 to 34 nm. Fluorescence correlation spectroscopy (FCS) was used to measure diffusion coefficients of dextran molecules in the excised porcine corneal stroma. The preferential sensitivity of FCS to diffusion along two dimensions was used to differentially probe diffusion along the directions parallel to and perpendicular to the collagen lamellae of the corneal stroma. In order to develop an understanding of how size… More >

  • Open Access

    ARTICLE

    Osmotic Loading of in Situ Chondrocytes in Their Native Environment

    Rami K Korhonen∗,†, Sang-Kuy Han, Walter Herzog

    Molecular & Cellular Biomechanics, Vol.7, No.3, pp. 125-134, 2010, DOI:10.3970/mcb.2010.007.125

    Abstract Changes in the osmotic environment cause changes in volume of isolated cells and cells in tissue explants, and the osmotic environment becomes hypotonic in cartilage diseases such as osteoarthritis (OA). However, it is not known how cells respond to a hypotonic osmotic challenge when situated in the fully intact articular cartilage.
    A confocal laser scanning microscope was used to image chondrocytes of intact rabbit patellae in an isotonic (300 mOsm) and hypotonic (172 mOsm) immersion medium. Cell volumes were calculated before and 5, 15, 60, 120 and 240 minutes after the change in saline concentration. Local tissue strains and swelling… More >

Displaying 1-10 on page 1 of 7. Per Page