Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    Fruit Leaf Diseases Classification: A Hierarchical Deep Learning Framework

    Samra Rehman1, Muhammad Attique Khan1, Majed Alhaisoni2, Ammar Armghan3, Fayadh Alenezi3, Abdullah Alqahtani4, Khean Vesal5, Yunyoung Nam5,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1179-1194, 2023, DOI:10.32604/cmc.2023.035324

    Abstract Manual inspection of fruit diseases is a time-consuming and costly because it is based on naked-eye observation. The authors present computer vision techniques for detecting and classifying fruit leaf diseases. Examples of computer vision techniques are preprocessing original images for visualization of infected regions, feature extraction from raw or segmented images, feature fusion, feature selection, and classification. The following are the major challenges identified by researchers in the literature: (i) low-contrast infected regions extract irrelevant and redundant information, which misleads classification accuracy; (ii) irrelevant and redundant information may increase computational time and reduce the designed model’s accuracy. This paper proposed… More >

  • Open Access

    ARTICLE

    Automatic Liver Tumor Segmentation in CT Modalities Using MAT-ACM

    S. Priyadarsini1,*, Carlos Andrés Tavera Romero2, Abolfazl Mehbodniya3, P. Vidya Sagar4, Sudhakar Sengan5

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1057-1068, 2022, DOI:10.32604/csse.2022.024788

    Abstract In the recent days, the segmentation of Liver Tumor (LT) has been demanding and challenging. The process of segmenting the liver and accurately spotting the tumor is demanding due to the diversity of shape, texture, and intensity of the liver image. The intensity similarities of the neighboring organs of the liver create difficulties during liver segmentation. The manual segmentation does not provide an accurate segmentation because the results provided by different medical experts can vary. Also, this manual technique requires a large number of image slices and time for segmentation. To solve these issues, the Fully Automatic Segmentation (FAS) technique… More >

  • Open Access

    ARTICLE

    A Post-Processing Algorithm for Boosting Contrast of MRI Images

    B. Priestly Shan1, O. Jeba Shiney1, Sharzeel Saleem2, V. Rajinikanth3, Atef Zaguia4, Dilbag Singh5,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2749-2763, 2022, DOI:10.32604/cmc.2022.023057

    Abstract Low contrast of Magnetic Resonance (MR) images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis. State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images. Drastic changes in brightness features, induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings. To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well. This method termed as Power-law and Logarithmic Modification-based Histogram Equalization (PLMHE) partitions the histogram of the image into two… More >

  • Open Access

    ARTICLE

    Contrast Enhancement Based Image Detection Using Edge Preserved Key Pixel Point Filtering

    Balakrishnan Natarajan1,*, Pushpalatha Krishnan2

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 423-438, 2022, DOI:10.32604/csse.2022.022376

    Abstract In existing methods for segmented images, either edge point extraction or preservation of edges, compromising contrast images is so sensitive to noise. The Degeneration Threshold Image Detection (DTID) framework has been proposed to improve the contrast of edge filtered images. Initially, DTID uses a Rapid Bilateral Filtering process for filtering edges of contrast images. This filter decomposes input images into base layers in the DTID framework. With minimal filtering time, Rapid Bilateral Filtering handles high dynamic contrast images for smoothening edge preservation. In the DTID framework, Rapid Bilateral Filtering with Shift-Invariant Base Pass Domain Filter is insensitive to noise. This… More >

  • Open Access

    ARTICLE

    STRASS Dehazing: Spatio-Temporal Retinex-Inspired Dehazing by an Averaging of Stochastic Samples

    Zhe Yu1, Bangyong Sun1,3,*, Di Liu2, Vincent Whannou de Dravo1, Margarita Khokhlova4, Siyuan Wu3

    Journal of Renewable Materials, Vol.10, No.5, pp. 1381-1395, 2022, DOI:10.32604/jrm.2022.018262

    Abstract In this paper, we propose a neoteric and high-efficiency single image dehazing algorithm via contrast enhancement which is called STRASS (Spatio-Temporal Retinex-Inspired by an Averaging of Stochastic Samples) dehazing, it is realized by constructing an efficient high-pass filter to process haze images and taking the influence of human vision system into account in image dehazing principles. The novel high-pass filter works by getting each pixel using RSR and computes the average of the samples. Then the low-pass filter resulting from the minimum envelope in STRESS framework has been replaced by the average of the samples. The final dehazed image is… More >

  • Open Access

    ARTICLE

    Effect of Direct Statistical Contrast Enhancement Technique on Document Image Binarization

    Wan Azani Mustafa1,2,*, Haniza Yazid3, Ahmed Alkhayyat4, Mohd Aminudin Jamlos3, Hasliza A. Rahim3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3549-3564, 2022, DOI:10.32604/cmc.2022.019801

    Abstract Background: Contrast enhancement plays an important role in the image processing field. Contrast correction has performed an adjustment on the darkness or brightness of the input image and increases the quality of the image. Objective: This paper proposed a novel method based on statistical data from the local mean and local standard deviation. Method: The proposed method modifies the mean and standard deviation of a neighbourhood at each pixel and divides it into three categories: background, foreground, and problematic (contrast & luminosity) region. Experimental results from both visual and objective aspects show that the proposed method can normalize the contrast… More >

  • Open Access

    ARTICLE

    An Efficient Breast Cancer Detection Framework for Medical Diagnosis Applications

    Naglaa F. Soliman1,2, Naglaa S. Ali2, Mahmoud I. Aly2,3, Abeer D. Algarni1,*, Walid El-Shafai4, Fathi E. Abd El-Samie1,4

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1315-1334, 2022, DOI:10.32604/cmc.2022.017001

    Abstract Breast cancer is the most common type of cancer, and it is the reason for cancer death toll in women in recent years. Early diagnosis is essential to handle breast cancer patients for treatment at the right time. Screening with mammography is the preferred examination for breast cancer, as it is available worldwide and inexpensive. Computer-Aided Detection (CAD) systems are used to analyze medical images to detect breast cancer, early. The death rate of cancer patients has decreased by detecting tumors early and having appropriate treatment after operations. Processing of mammogram images has four main steps: pre-processing, segmentation of the… More >

  • Open Access

    ARTICLE

    CNN-Based Forensic Method on Contrast Enhancement with JPEG Post-Processing

    Ziqing Yan1,2, Pengpeng Yang1,2, Rongrong Ni1,2,*, Yao Zhao1,2, Hairong Qi3

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3205-3216, 2021, DOI:10.32604/cmc.2021.020324

    Abstract As one of the most popular digital image manipulations, contrast enhancement (CE) is frequently applied to improve the visual quality of the forged images and conceal traces of forgery, therefore it can provide evidence of tampering when verifying the authenticity of digital images. Contrast enhancement forensics techniques have always drawn significant attention for image forensics community, although most approaches have obtained effective detection results, existing CE forensic methods exhibit poor performance when detecting enhanced images stored in the JPEG format. The detection of forgery on contrast adjustments in the presence of JPEG post processing is still a challenging task. In… More >

  • Open Access

    ARTICLE

    Denoising Medical Images Using Deep Learning in IoT Environment

    Sujeet More1, Jimmy Singla1, Oh-Young Song2,*, Usman Tariq3, Sharaf Malebary4

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3127-3143, 2021, DOI:10.32604/cmc.2021.018230

    Abstract Medical Resonance Imaging (MRI) is a noninvasive, nonradioactive, and meticulous diagnostic modality capability in the field of medical imaging. However, the efficiency of MR image reconstruction is affected by its bulky image sets and slow process implementation. Therefore, to obtain a high-quality reconstructed image we presented a sparse aware noise removal technique that uses convolution neural network (SANR_CNN) for eliminating noise and improving the MR image reconstruction quality. The proposed noise removal or denoising technique adopts a fast CNN architecture that aids in training larger datasets with improved quality, and SARN algorithm is used for building a dictionary learning technique… More >

  • Open Access

    ARTICLE

    Color Contrast Enhancement on Pap Smear Images Using Statistical Analysis

    Nadzirah Nahrawi1, Wan Azani Mustafa2,3,*, Siti Nurul Aqmariah Mohd Kanafiah1, Mohd Yusoff Mashor1

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 431-438, 2021, DOI:10.32604/iasc.2021.018635

    Abstract In the conventional cervix cancer diagnosis, the Pap smear sample images are taken by using a microscope,causing the cells to be hazy and afflicted by unwanted noise. The captured microscopic images of Pap smear may suffer from some defects such as blurring or low contrasts. These problems can hide and obscure the important cervical cell morphologies, leading to the risk of false diagnosis. The quality and contrast of the Pap smear images are the primary keys that could affect the diagnosis’ accuracy. The paper's main objective is to propose the best contrast enhancement to eliminate contrast problems in images and… More >

Displaying 1-10 on page 1 of 20. Per Page  

Share Link