Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    A Novel Detection Method for Pavement Crack with Encoder-Decoder Architecture

    Yalong Yang1,2,3, Wenjing Xu1,2,3, Yinfeng Zhu4, Liangliang Su1,2,3,*, Gongquan Zhang1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 761-773, 2023, DOI:10.32604/cmes.2023.027010

    Abstract As a current popular method, intelligent detection of cracks is of great significance to road safety, so deep learning has gradually attracted attention in the field of crack image detection. The nonlinear structure, low contrast and discontinuity of cracks bring great challenges to existing crack detection methods based on deep learning. Therefore, an end-to-end deep convolutional neural network (AttentionCrack) is proposed for automatic crack detection to overcome the inaccuracy of boundary location between crack and non-crack pixels. The AttentionCrack network is built on U-Net based encoder-decoder architecture, and an attention mechanism is incorporated into the multi-scale convolutional feature to enhance… More >

  • Open Access

    ARTICLE

    Deep Learning Method to Detect the Road Cracks and Potholes for Smart Cities

    Hong-Hu Chu1, Muhammad Rizwan Saeed2, Javed Rashid3,4,*, Muhammad Tahir Mehmood5, Israr Ahmad6, Rao Sohail Iqbal4, Ghulam Ali1

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1863-1881, 2023, DOI:10.32604/cmc.2023.035287

    Abstract The increasing global population at a rapid pace makes road traffic dense; managing such massive traffic is challenging. In developing countries like Pakistan, road traffic accidents (RTA) have the highest mortality percentage among other Asian countries. The main reasons for RTAs are road cracks and potholes. Understanding the need for an automated system for the detection of cracks and potholes, this study proposes a decision support system (DSS) for an autonomous road information system for smart city development with the use of deep learning. The proposed DSS works in layers where initially the image of roads is captured and coordinates… More >

  • Open Access

    ARTICLE

    Efficient Crack Severity Level Classification Using Bilayer Detection for Building Structures

    M. J. Anitha1,*, R. Hemalatha2

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 1183-1200, 2023, DOI:10.32604/csse.2023.031888

    Abstract Detection of cracks at the early stage is considered as very constructive since precautionary steps need to be taken to avoid the damage to the civil structures. Moreover, identifying and classifying the severity level of cracks is inevitable in order to find the stability of buildings. Hence, this paper proposes an efficient strategy to classify the cracks into fine, medium, and thick using a novel bilayer crack detection algorithm. The bilayer crack detection algorithm helps in extracting the requisite features from the crack for efficient classification. The proposed algorithm works well in the dark background and connects the discontinued cracks… More >

  • Open Access

    ARTICLE

    Bridge Crack Segmentation Method Based on Parallel Attention Mechanism and Multi-Scale Features Fusion

    Jianwei Yuan1, Xinli Song1,*, Huaijian Pu2, Zhixiong Zheng3, Ziyang Niu3

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6485-6503, 2023, DOI:10.32604/cmc.2023.035165

    Abstract Regular inspection of bridge cracks is crucial to bridge maintenance and repair. The traditional manual crack detection methods are time-consuming, dangerous and subjective. At the same time, for the existing mainstream vision-based automatic crack detection algorithms, it is challenging to detect fine cracks and balance the detection accuracy and speed. Therefore, this paper proposes a new bridge crack segmentation method based on parallel attention mechanism and multi-scale features fusion on top of the DeeplabV3+ network framework. First, the improved lightweight MobileNet-v2 network and dilated separable convolution are integrated into the original DeeplabV3+ network to improve the original backbone network Xception… More >

  • Open Access

    ARTICLE

    Crack Detection in Composite Materials Using McrowDNN

    R. Saveeth1,*, S. Uma Maheswari2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 983-1000, 2022, DOI:10.32604/iasc.2022.023455

    Abstract In the aerospace industry, composite materials are becoming more common. The presence of a crack in an aircraft makes it weaker and more dangerous, and it can lead to complete fracture and catastrophic failure. To predict the position and depth of a crack, various methods have been developed. For aircraft repair, crack diagnosis is extremely important. Even then, due to uncertainties arising from sources such as environmental conditions, packing, and intrinsic material property changes, accurate diagnosis in real engineering applications remains a challenge. Deep learning (DL) approaches have demonstrated powerful recognition potential in a variety of fields in recent years.… More >

  • Open Access

    ARTICLE

    Automated Crack Detection via Semantic Segmentation Approaches Using Advanced U-Net Architecture

    Honggeun Ji1,2, Jina Kim3, Syjung Hwang4, Eunil Park1,4,*

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 593-607, 2022, DOI:10.32604/iasc.2022.024405

    Abstract Cracks affect the robustness and adaptability of various infrastructures, including buildings, bridge piers, pavement, and pipelines. Therefore, the robustness and the reliability of automated crack detection are essential. In this study, we conducted image segmentation using various crack datasets by applying the advanced architecture of U-Net. First, we collected and integrated crack datasets from prior studies, including the cracks in buildings and pavements. For effective localization and detection of cracks, we used U-Net-based neural networks, ResU-Net, VGGU-Net, and EfficientU-Net. The models were evaluated by the five-fold cross-validation using several evaluation metrics including mean pixel accuracy (MPA), mean intersection over union… More >

  • Open Access

    ARTICLE

    Fatigue Crack Detection in Steel Plates Using Guided Waves and an Energy-Based Imaging Approach

    Mingyu Lu1,*, Kaige Zhu1, Qiang Wang2

    Structural Durability & Health Monitoring, Vol.15, No.3, pp. 207-225, 2021, DOI:10.32604/sdhm.2021.017720

    Abstract The increasing use of ultrasonic guided waves (GWs) has been shown to have great potential for the detection of fatigue cracks and non-fatigue type damages in metallic structures. This paper reports on a study demonstrating an energy-based damage imaging approach in which signal characteristics identified through relative time differences by fatigue crack (RTD/f) through different sensor paths are used to estimate the location of fatigue crack in steel plates based on GWs generated by an active piezoceramic transducer (PZT) network. The propagation of GWs in the original 10 mm-thick plate was complicated due to its thick geometry, wave dispersion, boundary… More >

  • Open Access

    ARTICLE

    Experimental Study of Effect of Temperature Variations on the Impedance Signature of PZT Sensors for Fatigue Crack Detection

    Saqlain Abbas1,2,*, Fucai Li1, Zulkarnain Abbas3,4, Taufeeq Ur Rehman Abbasi5, Xiaotong Tu6, Riffat Asim Pasha7

    Sound & Vibration, Vol.55, No.1, pp. 1-18, 2021, DOI:10.32604/sv.2021.013754

    Abstract Structural health monitoring (SHM) is recognized as an efficient tool to interpret the reliability of a wide variety of infrastructures. To identify the structural abnormality by utilizing the electromechanical coupling property of piezoelectric transducers, the electromechanical impedance (EMI) approach is preferred. However, in real-time SHM applications, the monitored structure is exposed to several varying environmental and operating conditions (EOCs). The previous study has recognized the temperature variations as one of the serious EOCs that affect the optimal performance of the damage inspection process. In this framework, an experimental setup is developed in current research to identify the presence of fatigue… More >

  • Open Access

    ARTICLE

    An Investigation into Active Strain Transfer Analysis in a Piezoceramic Sensor System for Structural Health Monitoring Using the Dual Boundary Element Method

    S.P.L. Leme1, M.H. Aliabadi2, L.M. Bezerra1, P.W. Partridge1

    Structural Durability & Health Monitoring, Vol.3, No.3, pp. 121-132, 2007, DOI:10.3970/sdhm.2007.003.121

    Abstract The coupled electromechanical behaviour of a thin piezoceramic sensor bonded to a stiffened panel subjected to membrane mechanical loadings is examined. The sensor is characterised by an electrostatic line model bonded to a damaged panel modelled by the dual boundary element method. Numerical results obtained demonstrate that the proposed method is capable of modelling changes in the signal output due to presence of cracks. Also presented is a numerical model for detecting fatigue crack growth in a stiffened panel using piezoceramic sensors. More >

  • Open Access

    ARTICLE

    Crack Detection and Localization on Wind Turbine Blade Using Machine Learning Algorithms: A Data Mining Approach

    A. Joshuva1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.13, No.2, pp. 181-203, 2019, DOI:10.32604/sdhm.2019.00287

    Abstract Wind turbine blades are generally manufactured using fiber type material because of their cost effectiveness and light weight property however, blade get damaged due to wind gusts, bad weather conditions, unpredictable aerodynamic forces, lightning strikes and gravitational loads which causes crack on the surface of wind turbine blade. It is very much essential to identify the damage on blade before it crashes catastrophically which might possibly destroy the complete wind turbine. In this paper, a fifteen tree classification based machine learning algorithms were modelled for identifying and detecting the crack on wind turbine blades. The models are built based on… More >

Displaying 1-10 on page 1 of 12. Per Page  

Share Link