Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (63)
  • Open Access

    ABSTRACT

    Crack propagation characteristics of a high-ductility steel with layered and graded microstructures

    A.Y.Chen, J. Lu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 45-46, 2011, DOI:10.3970/icces.2011.020.045

    Abstract The structural reliability of many brittle materials such as nanomaterials relies on the occurrence of intergranular, as opposed to transgranular, fracture in order to induce toughening by crack bridging. The current work examines the role of interface strength and grain size distribution in promoting intergranular fracture in order to maintain high toughening. A layered nanostructural 304SS sheet characterized by periodic distribution of nanocrystalline layers and micron-grained layers with graded grain size evolution has exhibited exceptional properties. The in situ SEM observations illustrate that an intergranular path and the consequent interface bridging process can be partitioned More >

  • Open Access

    ARTICLE

    Discussion of Experimental Data for 3D Crack Propagation on the Basis of Three Dimensional Singularities

    E. Schnack1, W. Weber2, Y. Zhu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.1, pp. 1-38, 2011, DOI:10.3970/cmes.2011.074.001

    Abstract Three dimensional fracture mechanics was done by several groups in the past. One topic for these three dimensional fracture mechanics is to consider re-entrant corners or wedges for isotropic material. An algorithm was developed in the past to compute the dominant eigenvalues for those problems with high accuracy. Based on Kondratiev's Lemma for elliptic boundary value problems it is started with the asymptotic for the displacement and stress distribution around these three dimensional corners. By considering the mixed boundary value problem, the field quantities in the vicinity of corner points are computed by using a… More >

  • Open Access

    ARTICLE

    Propagation of Cracks in Selected Specimens Subject to Mixed-Mode

    G. Dhondt1, D. Bremberg2

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 305-328, 2010, DOI:10.3970/sdhm.2010.006.305

    Abstract In a previous article the K-distritubion along the crack front of several mixed-mode specimens was investigated [Dhondt, Chergui, and Buchholz (2001)]. Both the modified virtual crack closure integral method and the quarter point element stress field method yielded results close to the available reference solutions in the literature [Murakami (1987)]. The present paper extends these results in two aspects. First, the meshing procedure used to obtain a focused mesh at the crack front is modified in order to deal with highly curved cracks. Secondly, the K-distribution along the initial crack is used to perform a More >

  • Open Access

    ABSTRACT

    On essential work of fracture method: theoretical consideration and numerical simulation

    X.-H. Chen1, Y.-W. Mai2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.14, No.2, pp. 43-50, 2010, DOI:10.3970/icces.2010.014.043

    Abstract A general elastoplastic fracture mechanics theory is proposed for applying the Essential-Work-of-Fracture (EWF) Method to quasi-static and impact toughness characterization. Advanced finite element modeling is developed to simulate the EWF Method using the crack-tip opening angle criterion (CTOA) and the constitutive relation of the material under consideration. For Poly(ethylene-terephlate) (PET) films, the load-displacement curves are calculated for the whole crack propagation process of deeply double-edge notched tensile specimens (DENT) with different ligament lengths so as to determine the total work, the essential work and the non-essential work of fracture. The effects of specimen gauge length More >

  • Open Access

    ARTICLE

    A Relocalization Technique for the Multiscale Computation of Delamination in Composite Structures

    O. Allix1, P. Kerfriden1, P. Gosselet1

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.3, pp. 271-292, 2010, DOI:10.3970/cmes.2010.055.271

    Abstract We present numerical enhancements of a multiscale domain decomposition strategy based on a LaTIn solver and dedicated to the computation of the debounding in laminated composites. We show that the classical scale separation is irrelevant in the process zones, which results in a drop in the convergence rate of the strategy. We show that performing nonlinear subresolutions in the vicinity of the front of the crack at each prediction stage of the iterative solver permits to restore the effectiveness of the method. More >

  • Open Access

    ABSTRACT

    A path iterative method for laser-controlled crack propagation and its convergence

    Weiming Tao1, Xingwang Yang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.3, pp. 83-84, 2009, DOI:10.3970/icces.2009.012.083

    Abstract Laser controlled separation of brittle materials like glass is a promising non-conven\discretionary {-}{}{}tional cutting method. It is an application of the crack propagation driven by thermal stresses induced by laser irradiation. In order to induce and control a crack propagating accurately along predetermined asymmetric trajectory in a brittle plate, an iterative method for effective laser scanning path was presented, and the effect of control parameters on the convergence was investigated. The iterative formulation for laser scanning path was based on PID control theory, which was composed of deviation of the crack from predetermined trajectory and… More >

  • Open Access

    ABSTRACT

    On the molecular dynamics analysis of defect effect on mechanical properties and fracture behaviors of carbon nanotubes

    Hsien-Chie Cheng1, Yu-Chen Hsu2, Wen-Hwa Chen2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.2, pp. 73-74, 2009, DOI:10.3970/icces.2009.012.073

    Abstract Due to the limitation of fabrication technologies nowadays, initial defects in carbon nanotubes (CNTs) are inevitably perceived particularly during the manufacturing process or chemical treatment. The investigation of the effects of initial defects existing in CNTs on their mechanical properties and fracture behaviors becomes essential for their potentiality in engineering applications.
    In this study, the defect effects, including number in percentage, type, and location, are explored using the molecular dynamics (MD) simulation with Tersoff Brenner potential. Results show that the mechanical properties, such as the elastic modulus, failure strength and strain, are strongly affected by the… More >

  • Open Access

    ABSTRACT

    Multiscale simulation of crack propagation using variable-node finite elements

    Dongwoo Sohn1, Jae Hyuk Lim2, Young-Sam Cho3, Seyoung Im1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.2, pp. 53-54, 2009, DOI:10.3970/icces.2009.010.053

    Abstract A novel multiscale finite element (FE) scheme is proposed for a simulation of crack propagation in the heterogeneous media including randomly distributed microstructures, such as voids, rigid fibers. A fine scale mesh is employed to capture the singularity of the crack tip and the effect of microstructures at the vicinity of crack tip. On the other hand, a region far from the crack tip is composed of coarse scale mesh, wherein the effect of the microstructures is averaged through the homogenization theory. An interface between the fine scale mesh and the coarse scale mesh is More >

  • Open Access

    ARTICLE

    Cell Method Analysis of Crack Propagation in Tensioned Concrete Plates

    E. Ferretti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.3, pp. 253-282, 2009, DOI:10.3970/cmes.2009.054.253

    Abstract In this study, the problem of finding the complete trajectory of propagation and the limiting load in plates with internal straight cracks is extended to the non-linear field. In particular, results concerning concrete plates in bi-axial tensile loading are shown. The concrete constitutive law adopted for this purpose is monotonic non-decreasing, as following according to previous studies of the author on monotonic mono-axial loading. The analysis is performed in a discrete form, by means of the Cell Method (CM). The aim of this study is both to test the new concrete constitutive law in biaxial More >

  • Open Access

    ARTICLE

    Modeling Intergranular Crack Propagation in Polycrystalline Materials

    M.A.Arafin1, J.A.Szpunar2

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 125-140, 2009, DOI:10.3970/cmc.2009.014.125

    Abstract A novel microstructure, texture and grain boundary character based model has been proposed to simulate the intergranular crack propagation behavior in textured polycrystalline materials. The model utilizes the Voronoi algorithm and Monte Carlo simulations to construct the microstructure with desired grain shape factor, takes the texture description of the materials to assign the orientations of the grains, evaluates the grain boundary character based on the misorientation angle - axis calculated from the orientations of the neighboring grains, and takes into account the inclination of grain boundaries with respect to the external stress direction. Markov Chain More >

Displaying 41-50 on page 5 of 63. Per Page