Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    Iterative Dichotomiser Posteriori Method Based Service Attack Detection in Cloud Computing

    B. Dhiyanesh1,*, K. Karthick2, R. Radha3, Anita Venaik4

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1099-1107, 2023, DOI:10.32604/csse.2023.024691 - 15 June 2022

    Abstract Cloud computing (CC) is an advanced technology that provides access to predictive resources and data sharing. The cloud environment represents the right type regarding cloud usage model ownership, size, and rights to access. It introduces the scope and nature of cloud computing. In recent times, all processes are fed into the system for which consumer data and cache size are required. One of the most security issues in the cloud environment is Distributed Denial of Service (DDoS) attacks, responsible for cloud server overloading. This proposed system ID3 (Iterative Dichotomiser 3) Maximum Multifactor Dimensionality Posteriori Method… More >

  • Open Access

    ARTICLE

    Detecting and Preventing of Attacks in Cloud Computing Using Hybrid Algorithm

    R. S. Aashmi1, T. Jaya2,*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 79-95, 2023, DOI:10.32604/iasc.2023.024291 - 06 June 2022

    Abstract

    Cloud computing is the technology that is currently used to provide users with infrastructure, platform, and software services effectively. Under this system, Platform as a Service (PaaS) offers a medium headed for a web development platform that uniformly distributes the requests and resources. Hackers using Denial of service (DoS) and Distributed Denial of Service (DDoS) attacks abruptly interrupt these requests. Even though several existing methods like signature-based, statistical anomaly-based, and stateful protocol analysis are available, they are not sufficient enough to get rid of Denial of service (DoS) and Distributed Denial of Service (DDoS) attacks

    More >

  • Open Access

    ARTICLE

    Evidence-Based Federated Learning for Set-Valued Classification of Industrial IoT DDos Attack Traffic

    Jiale Cheng1, Zilong Jin1,2,*

    Journal on Internet of Things, Vol.4, No.3, pp. 183-195, 2022, DOI:10.32604/jiot.2022.042054 - 12 June 2023

    Abstract A novel Federated learning classifier is proposed using the Dempster-Shafer (DS) theory for the set-valued classification of industrial IoT Distributed Denial of Service (DDoS) attack traffic. The proposed classifier, referred to as the evidence-based federated learning classifier, employs convolution and pooling layers to extract high-dimensional features of Distributed Denial of Service (DDoS) traffic from the local data of private industrial clients. The characteristics obtained from the various participants are transformed into mass functions and amalgamated utilizing Dempster’s rule within the DS layer, situated on the federated server. Lastly, the set value classification task of attack More >

  • Open Access

    ARTICLE

    HDLIDP: A Hybrid Deep Learning Intrusion Detection and Prevention Framework

    Magdy M. Fadel1,*, Sally M. El-Ghamrawy2, Amr M. T. Ali-Eldin1, Mohammed K. Hassan3, Ali I. El-Desoky1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2293-2312, 2022, DOI:10.32604/cmc.2022.028287 - 16 June 2022

    Abstract Distributed denial-of-service (DDoS) attacks are designed to interrupt network services such as email servers and webpages in traditional computer networks. Furthermore, the enormous number of connected devices makes it difficult to operate such a network effectively. Software defined networks (SDN) are networks that are managed through a centralized control system, according to researchers. This controller is the brain of any SDN, composing the forwarding table of all data plane network switches. Despite the advantages of SDN controllers, DDoS attacks are easier to perpetrate than on traditional networks. Because the controller is a single point of More >

  • Open Access

    ARTICLE

    Securing Consumer Internet of Things for Botnet Attacks: Deep Learning Approach

    Tariq Ahamed Ahanger1,*, Abdulaziz Aldaej1, Mohammed Atiquzzaman2, Imdad Ullah1, Mohammed Yousuf Uddin1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3199-3217, 2022, DOI:10.32604/cmc.2022.027212 - 16 June 2022

    Abstract DDoS attacks in the Internet of Things (IoT) technology have increased significantly due to its spread adoption in different industrial domains. The purpose of the current research is to propose a novel technique for detecting botnet attacks in user-oriented IoT environments. Conspicuously, an attack identification technique inspired by Recurrent Neural networks and Bidirectional Long Short Term Memory (BLRNN) is presented using a unique Deep Learning (DL) technique. For text identification and translation of attack data segments into tokenized form, word embedding is employed. The performance analysis of the presented technique is performed in comparison to More >

  • Open Access

    ARTICLE

    Detection of DDoS Attack in IoT Networks Using Sample Selected RNN-ELM

    S. Hariprasad1,*, T. Deepa1, N. Bharathiraja2

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1425-1440, 2022, DOI:10.32604/iasc.2022.022856 - 25 May 2022

    Abstract The Internet of Things (IoT) is a global information and communication technology which aims to connect any type of device to the internet at any time and in any location. Nowadays billions of IoT devices are connected to the world, this leads to easily cause vulnerability to IoT devices. The increasing of users in different IoT-related applications leads to more data attacks is happening in the IoT networks after the fog layer. To detect and reduce the attacks the deep learning model is used. In this article, a hybrid sample selected recurrent neural network-extreme learning… More >

  • Open Access

    ARTICLE

    Dynamic Threshold-Based Approach to Detect Low-Rate DDoS Attacks on Software-Defined Networking Controller

    Mohammad Adnan Aladaileh, Mohammed Anbar*, Iznan H. Hasbullah, Abdullah Ahmed Bahashwan, Shadi Al-Sarawn

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1403-1416, 2022, DOI:10.32604/cmc.2022.029369 - 18 May 2022

    Abstract The emergence of a new network architecture, known as Software Defined Networking (SDN), in the last two decades has overcome some drawbacks of traditional networks in terms of performance, scalability, reliability, security, and network management. However, the SDN is vulnerable to security threats that target its controller, such as low-rate Distributed Denial of Service (DDoS) attacks, The low-rate DDoS attack is one of the most prevalent attacks that poses a severe threat to SDN network security because the controller is a vital architecture component. Therefore, there is an urgent need to propose a detection approach… More >

  • Open Access

    ARTICLE

    Comprehensive DDoS Attack Classification Using Machine Learning Algorithms

    Olga Ussatova1,2, Aidana Zhumabekova1,*, Yenlik Begimbayeva2,3, Eric T. Matson4, Nikita Ussatov5

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 577-594, 2022, DOI:10.32604/cmc.2022.026552 - 18 May 2022

    Abstract The fast development of Internet technologies ignited the growth of techniques for information security that protect data, networks, systems, and applications from various threats. There are many types of threats. The dedicated denial of service attack (DDoS) is one of the most serious and widespread attacks on Internet resources. This attack is intended to paralyze the victim's system and cause the service to fail. This work is devoted to the classification of DDoS attacks in the special network environment called Software-Defined Networking (SDN) using machine learning algorithms. The analyzed dataset included instances of two classes:… More >

  • Open Access

    ARTICLE

    Adaptive Polling Rate for SNMP for Detecting Elusive DDOS

    Yichiet Aun*, Yen-Min Jasmina Khaw, Ming-Lee Gan, Vasaki Ponnusamy

    Journal of Cyber Security, Vol.4, No.1, pp. 17-28, 2022, DOI:10.32604/jcs.2022.027524 - 05 May 2022

    Abstract Resilient network infrastructure is pivotal for business entities that are growing reliance on the Internet. Distributed Denial-of-Service (DDOS) is a common network threat that collectively overwhelms and exhausts network resources using coordinated botnets to interrupt access to network services, devices, and resources. IDS is typically deployed to detect DDOS based on Snort rules. Although being fairly accurate, IDS operates on a compute-intensive packet inspection technique and lacks rapid DDOS detection. Meanwhile, SNMP is a comparably lightweight countermeasure for fast detection. However, this SNMP trigger is often circumvented if the DDOS burst rate is coordinated to… More >

  • Open Access

    ARTICLE

    Early DDoS Detection and Prevention with Traced-Back Blocking in SDN Environment

    Sriramulu Bojjagani1, D. R. Denslin Brabin2,*, K. Saravanan2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 805-819, 2022, DOI:10.32604/iasc.2022.023771 - 03 May 2022

    Abstract The flow of information is a valuable asset for every company and its consumers, and Distributed Denial-of-Service (DDoS) assaults pose a substantial danger to this flow. If we do not secure security, hackers may steal information flowing across a network, posing a danger to a business and society. As a result, the most effective ways are necessary to deal with the dangers. A DDoS attack is a well-known network infrastructure assault that prevents servers from servicing genuine customers. It is necessary to identify and block a DDoS assault before it reaches the server in order… More >

Displaying 31-40 on page 4 of 58. Per Page