Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,599)
  • Open Access

    ARTICLE

    A Deep Learning-Based Computational Algorithm for Identifying Damage Load Condition: An Artificial Intelligence Inverse Problem Solution for Failure Analysis

    Shaofei Ren1,2, Guorong Chen2 , Tiange Li2 , Qijun Chen2, Shaofan Li2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.3, pp. 287-307, 2018, DOI:10.31614/cmes.2018.04697

    Abstract In this work, we have developed a novel machine (deep) learning computational framework to determine and identify damage loading parameters (conditions) for structures and materials based on the permanent or residual plastic deformation distribution or damage state of the structure. We have shown that the developed machine learning algorithm can accurately and (practically) uniquely identify both prior static as well as impact loading conditions in an inverse manner, based on the residual plastic strain and plastic deformation as forensic signatures. The paper presents the detailed machine learning algorithm, data acquisition and learning processes, and validation/verification More >

  • Open Access

    ARTICLE

    An Image Classification Method Based on Deep Neural Network with Energy Model

    Yang Yang1,*, Jinbao Duan1, Haitao Yu1, Zhipeng Gao1, Xuesong Qiu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.3, pp. 555-575, 2018, DOI:10.31614/cmes.2018.04249

    Abstract The development of deep learning has revolutionized image recognition technology. How to design faster and more accurate image classification algorithms has become our research interests. In this paper, we propose a new algorithm called stochastic depth networks with deep energy model (SADIE), and the model improves stochastic depth neural network with deep energy model to provide attributes of images and analysis their characteristics. First, the Bernoulli distribution probability is used to select the current layer of the neural network to prevent gradient dispersion during training. Then in the backpropagation process, the energy function is designed More >

  • Open Access

    ARTICLE

    Tumor Cell Identification in Ki-67 Images on Deep Learning

    Ruihan Zhang1,2, Junhao Yang1, Chunxiao Chen1,*

    Molecular & Cellular Biomechanics, Vol.15, No.3, pp. 177-187, 2018, DOI:10.3970/mcb.2018.04292

    Abstract The proportion of cells staining for the nuclear antigen Ki-67 is an important predictive indicator for assessment of tumor cell proliferation and growth in routine pathological investigation. Instead of traditional scoring methods based on the experience of a trained laboratory scientist, deep learning approach can be automatically used to analyze the expression of Ki-67 as well. Deep learning based on convolutional neural networks (CNN) for image classification and single shot multibox detector (SSD) for object detection are used to investigate the expression of Ki-67 for assessment of biopsies from patients with breast cancer in this More >

  • Open Access

    ARTICLE

    A Survey of Image Information Hiding Algorithms Based on Deep Learning

    Ruohan Meng1,2,*, Qi Cui1,2, Chengsheng Yuan1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.3, pp. 425-454, 2018, DOI:10.31614/cmes.2018.04765

    Abstract With the development of data science and technology, information security has been further concerned. In order to solve privacy problems such as personal privacy being peeped and copyright being infringed, information hiding algorithms has been developed. Image information hiding is to make use of the redundancy of the cover image to hide secret information in it. Ensuring that the stego image cannot be distinguished from the cover image, and sending secret information to receiver through the transmission of the stego image. At present, the model based on deep learning is also widely applied to the More >

  • Open Access

    ARTICLE

    Fault Diagnosis of Motor in Frequency Domain Signal by Stacked De-noising Auto-encoder

    Xiaoping Zhao1, Jiaxin Wu1,*, Yonghong Zhang2, Yunqing Shi3, Lihua Wang2

    CMC-Computers, Materials & Continua, Vol.57, No.2, pp. 223-242, 2018, DOI:10.32604/cmc.2018.02490

    Abstract With the rapid development of mechanical equipment, mechanical health monitoring field has entered the era of big data. Deep learning has made a great achievement in the processing of large data of image and speech due to the powerful modeling capabilities, this also brings influence to the mechanical fault diagnosis field. Therefore, according to the characteristics of motor vibration signals (nonstationary and difficult to deal with) and mechanical ‘big data’, combined with deep learning, a motor fault diagnosis method based on stacked de-noising auto-encoder is proposed. The frequency domain signals obtained by the Fourier transform More >

  • Open Access

    ARTICLE

    Snow Cover Mapping for Mountainous Areas by Fusion of MODIS L1B and Geographic Data Based on Stacked Denoising Auto-Encoders

    Xi Kan1, Yonghong Zhang2,*, Linglong Zhu2, Liming Xiao2, Jiangeng Wang3, Wei Tian4, Haowen Tan5

    CMC-Computers, Materials & Continua, Vol.57, No.1, pp. 49-68, 2018, DOI:10.32604/cmc.2018.02376

    Abstract Snow cover plays an important role in meteorological and hydrological researches. However, the accuracies of currently available snow cover products are significantly lower in mountainous areas than in plains, due to the serious snow/cloud confusion problem caused by high altitude and complex topography. Aiming at this problem, an improved snow cover mapping approach for mountainous areas was proposed and applied in Qinghai-Tibetan Plateau. In this work, a deep learning framework named Stacked Denoising Auto-Encoders (SDAE) was employed to fuse the MODIS multispectral images and various geographic datasets, which are then classified into three categories: Snow,… More >

  • Open Access

    ARTICLE

    Improved VGG Model for Road Traffic Sign Recognition

    Shuren Zhou1,2,*, Wenlong Liang1,2, Junguo Li1,2, Jeong-Uk Kim3

    CMC-Computers, Materials & Continua, Vol.57, No.1, pp. 11-24, 2018, DOI:10.32604/cmc.2018.02617

    Abstract Road traffic sign recognition is an important task in intelligent transportation system. Convolutional neural networks (CNNs) have achieved a breakthrough in computer vision tasks and made great success in traffic sign classification. In this paper, it presents a road traffic sign recognition algorithm based on a convolutional neural network. In natural scenes, traffic signs are disturbed by factors such as illumination, occlusion, missing and deformation, and the accuracy of recognition decreases, this paper proposes a model called Improved VGG (IVGG) inspired by VGG model. The IVGG model includes 9 layers, compared with the original VGG More >

  • Open Access

    ARTICLE

    Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modulation Classification

    Ya Tu1, Yun Lin1, Jin Wang2,3,*, Jeong-Uk Kim4

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 243-254, 2018, DOI:10.3970/cmc.2018.01755

    Abstract Deep Learning (DL) is such a powerful tool that we have seen tremendous success in areas such as Computer Vision, Speech Recognition, and Natural Language Pro-cessing. Since Automated Modulation Classification (AMC) is an important part in Cognitive Radio Networks, we try to explore its potential in solving signal modula-tion recognition problem. It cannot be overlooked that DL model is a complex mod-el, thus making them prone to over-fitting. DL model requires many training data to combat with over-fitting, but adding high quality labels to training data manually is not always cheap and accessible, especially in More >

  • Open Access

    ARTICLE

    Paragraph Vector Representation Based on Word to Vector and CNN Learning

    Zeyu Xiong1,*, Qiangqiang Shen1, Yijie Wang1, Chenyang Zhu2

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 213-227, 2018, DOI:10.3970/cmc.2018.01762

    Abstract Document processing in natural language includes retrieval, sentiment analysis, theme extraction, etc. Classical methods for handling these tasks are based on models of probability, semantics and networks for machine learning. The probability model is loss of semantic information in essential, and it influences the processing accuracy. Machine learning approaches include supervised, unsupervised, and semi-supervised approaches, labeled corpora is necessary for semantics model and supervised learning. The method for achieving a reliably labeled corpus is done manually, it is costly and time-consuming because people have to read each document and annotate the label of each document.… More >

Displaying 1591-1600 on page 160 of 1599. Per Page