Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Production of Producer Gas from Densified Agricultural Biomass in Downdraft Gasifier and Its Application to Small Diesel Engines

    Kittikorn Sasujit1,*, Nigran Homdoung1, Nakorn Tippayawong2

    Energy Engineering, Vol.119, No.5, pp. 2149-2167, 2022, DOI:10.32604/ee.2022.022069

    Abstract Biomass is becoming one of the most popular renewable energy sources, especially from agricultural wastes. These wastes can be gasified and utilized in various industries. This experimental study investigated producer gas generation from densified agricultural fuels such as corncobs, rice husks, wood chips, and oil palm fronds in a 50 kWth throatless downdraft gasifier. This system produced combustible gases such as H2, CO, and CH4, which were utilized as a substitute for diesel fuel in a small diesel engine for power generation. The results showed that the gasifier performs successfully and seems to prefer pellets to briquettes. Producer gas contains 18%–20%… More >

  • Open Access

    ARTICLE

    An Analysis of the Factors Influencing Cavitation in the Cylinder Liner of a Diesel Engine

    Dehui Tong1,2, Shunshun Qin1,2,*, Quan Liu1,2, Yuhan Li3, Jiewei Lin2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1667-1682, 2022, DOI:10.32604/fdmp.2022.019768

    Abstract Avoiding cavitation inside the water jacket is one of the most important issues regarding the proper design of a diesel engine’s cylinder liner. Using CFD simulations conducted in the frame of a mixture multiphase approach, a moving grid technology and near-wall cavitation model, in the present study the factors and fluid-dynamic patterns that influence cavitation are investigated from both macroscopic and mesoscopic perspectives. Several factors are examined, namely: wall vibration, water jacket width, initial cavitation bubble radius, coolant temperature, and number of bubbles. The results show that reducing the cylinder liner vibration intensity can significantly weaken the cavitation. Similarly, increasing… More >

  • Open Access

    ARTICLE

    Soot Distribution and Thermal Regeneration of Marine Diesel Particulate Filter

    Xiangli Wang1, Peiyong Ni2,*

    Energy Engineering, Vol.119, No.4, pp. 1697-1710, 2022, DOI:10.32604/ee.2022.021070

    Abstract Diesel particulate filter (DPF) is a leading technology reducing particle emissions from marine diesel engines. The removal or regeneration of soot in DPF is an important issue. The purpose of this study is to provide some reference strategies to design the DPF for marine diesel engines. In this paper, a mathematical model of a marine DPF was built up and the particle trap process and the regeneration dynamics were simulated. The results show that the cake soot mass concentrations from 0 to 4.2 g/L during the trap process increase linearly with the increase of the exhaust gas flows while the… More >

  • Open Access

    ARTICLE

    Characteristics of Diesel/N-Butanol Blend on a Common Rail Diesel Engine with Exhaust Gas Recirculation

    Yanfei Chen1, Jingjing He2,*, Hao Chen2,*, Xin Su2, Bin Xie2

    Energy Engineering, Vol.119, No.3, pp. 1239-1259, 2022, DOI:10.32604/ee.2022.017847

    Abstract 20% n-butanol is blended in diesel by volume (noted as D80B20) and experiment has been carried out to study the effect on the combustion and emission characteristics based on a common rail diesel engine with exhaust gas recirculation (EGR) system. The results reveal that D80B20 has longer ignition delay, shorter combustion duration and higher maximum in-cylinder temperature than pure diesel (noted as D100). Further, the number concentration and volume concentration of ultrafine particles decrease significantly while NOX emissions increase a little with the addition of n-butanol. When the exhaust gas is induced into cylinder, NOX emissions significantly decrease and ultrafine… More >

  • Open Access

    ARTICLE

    CFD Analysis and Optimization of a Diesel Engine Cooling Water Jacket

    Shunshun Qin1, Chengfen Xie1, Song Li1, Qi Yang1, Jianwei Chen2, Ke Sun2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 647-659, 2022, DOI:10.32604/fdmp.2022.017519

    Abstract The STAR-CCM + software is used to investigate the flow inside a cooling water jacket of an in-line six-cylinder diesel engine. The results show that the average flow velocity of the cooling water inside the jacket is 1.669 m/s while the flow velocity distribution is not uniform for each cylinder. Moreover, the fluid velocity in proximity to the cylinder head is too low, thereby affecting the cooling performances of the water jacket. Two corresponding structural optimization schemes are proposed to mitigate this issue and the post-optimization performances of the water jacket are discussed in detail. More >

  • Open Access

    ARTICLE

    Numerical and Experimental Study of a Tornado Mixer

    Yibao Wang, Dongsheng Wang, Yudan Xue, Dailong Shi*, Xiaoli Zhang, Yang Chai, Bang An

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1113-1127, 2021, DOI:10.32604/fdmp.2021.017591

    Abstract A new design of a selective catalytic reduction (SCR) mixer called tornado was developed for a heavy-duty diesel engine to solve the urea deposition problem. A combination of CFD simulation and experimental studies was used to comprehensively evaluate the performance of the tornado mixer. According to the numerical simulations, this mixer can improve the front surface flow uniformity of the SCR carrier by 6.67% and the NH3 distribution uniformity by 3.19% compared to a traditional mixer. Similarly, steady state SCR conversion efficiency test results have shown that the tornado mixer can increase the average SCR conversion efficiency by 1.73% compared… More >

  • Open Access

    ARTICLE

    Assessment of the Application of Subcooled Fluid Boiling to Diesel Engines for Heat Transfer Enhancement

    Xiaoyu Hu, Yi Wang, Siyuan Li, Qiang Sun, Shuzhan Bai, Guoxiang Li*, Ke Sun*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1049-1066, 2021, DOI:10.32604/fdmp.2021.016763

    Abstract The increasing demand of cooling in internal combustion engines (ICE) due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new technologies based on subcooled fluid boiling. Accordingly, in the present study, experiments based on subcooled flow boiling of 50/50 by volume mixture of ethylene glycol and water coolant (EG/W) in a rectangular channel heated by a cast iron block are presented. Different degrees of subcooling, velocity and pressure conditions are examined. Comparison of three empirical reference models shows that noticeable deviations occur especially when low… More >

  • Open Access

    ARTICLE

    Optimization of Transducer Location for Novel Non-Intrusive Methodologies of Diagnosis in Diesel Engines

    S. Narayan1,*, M. U. Kaisan2, Shitu Abubakar2, Faisal O. Mahroogi3, Vipul Gupta4

    Sound & Vibration, Vol.55, No.3, pp. 221-234, 2021, DOI:10.32604/sv.2021.016539

    Abstract The health monitoring has been studied to ensure integrity of design of engine structure by detection, quantification, and prediction of damages. Early detection of faults may allow the downtime of maintenance to be rescheduled, thus preventing sudden shutdown of machines. In cylinder pressure developed, vibrations and noise emissions data provide a rich source of information about condition of engines. Monitoring of vibrations and noise emissions are novel non-intrusive methodologies for which positioning of various transducers are important issue. The presented work shows applicability of these diagnosis methodologies adopted in case of diesel engines. The effects of changing various fuel injection… More >

  • Open Access

    ARTICLE

    Optimizing the Exhaust System of Marine Diesel Engines to Improve Low-speed Performances and Cylinder Working Conditions

    Sheng Liu1, Ling Leng2, Wenjie Zhou2, Lei Shi2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.4, pp. 683-695, 2021, DOI:10.32604/fdmp.2021.013575

    Abstract Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform. Here a high-power marine 16-cylinder V-type turbocharged diesel engine is simulated using the GT-Power software. The results reveal the differences induced by different exhaust system structures, such as an 8-cylinder-in-pipe exhaust system with single/double superchargers and a 4-cylinder-in-pipe exhaust system with a single supercharger. After a comparative analysis, the 8-cylinder type with double superchargers is determined to be the optimal solution, and the structure of the exhaust system is… More >

  • Open Access

    ARTICLE

    Thermal Analysis of a Novel Oil Cooled Piston Using a Fluid-Solid Interaction Method

    Dehui Tong1,2, Shunshun Qin1,2, Jingguo Lin1,2, Jingyang Sun3, Yuping Hu3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.4, pp. 773-787, 2021, DOI:10.32604/fdmp.2021.013425

    Abstract Thermal load has a vital influence on the normal operation and service life of diesel engines. In this study, the thermal load and oil-cooling effect on diesel engine pistons were investigated by means of computational fluid dynamics. In particular, the flow and heat transfer characteristics of the cooling gallery were determined during the oscillation of the piston. Moreover, the temperature field distribution of the piston with and without the cooling gallery were compared. The results revealed that the cooling gallery has a prominent effect on reducing the thermal load on the piston crown and piston lands. To fully understand the… More >

Displaying 11-20 on page 2 of 23. Per Page