Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    DDoS Attack Detection in Cloud Computing Based on Ensemble Feature Selection and Deep Learning

    Yousef Sanjalawe1,2,*, Turke Althobaiti3,4

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3571-3588, 2023, DOI:10.32604/cmc.2023.037386

    Abstract Intrusion Detection System (IDS) in the cloud Computing (CC) environment has received paramount interest over the last few years. Among the latest approaches, Deep Learning (DL)-based IDS methods allow the discovery of attacks with the highest performance. In the CC environment, Distributed Denial of Service (DDoS) attacks are widespread. The cloud services will be rendered unavailable to legitimate end-users as a consequence of the overwhelming network traffic, resulting in financial losses. Although various researchers have proposed many detection techniques, there are possible obstacles in terms of detection performance due to the use of insignificant traffic features. Therefore, in this paper,… More >

  • Open Access

    ARTICLE

    A Novel Framework for DDoS Attacks Detection Using Hybrid LSTM Techniques

    Anitha Thangasamy*, Bose Sundan, Logeswari Govindaraj

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2553-2567, 2023, DOI:10.32604/csse.2023.032078

    Abstract The recent development of cloud computing offers various services on demand for organization and individual users, such as storage, shared computing space, networking, etc. Although Cloud Computing provides various advantages for users, it remains vulnerable to many types of attacks that attract cyber criminals. Distributed Denial of Service (DDoS) is the most common type of attack on cloud computing. Consequently, Cloud computing professionals and security experts have focused on the growth of preventive processes towards DDoS attacks. Since DDoS attacks have become increasingly widespread, it becomes difficult for some DDoS attack methods based on individual network flow features to distinguish… More >

  • Open Access

    ARTICLE

    HDLIDP: A Hybrid Deep Learning Intrusion Detection and Prevention Framework

    Magdy M. Fadel1,*, Sally M. El-Ghamrawy2, Amr M. T. Ali-Eldin1, Mohammed K. Hassan3, Ali I. El-Desoky1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2293-2312, 2022, DOI:10.32604/cmc.2022.028287

    Abstract Distributed denial-of-service (DDoS) attacks are designed to interrupt network services such as email servers and webpages in traditional computer networks. Furthermore, the enormous number of connected devices makes it difficult to operate such a network effectively. Software defined networks (SDN) are networks that are managed through a centralized control system, according to researchers. This controller is the brain of any SDN, composing the forwarding table of all data plane network switches. Despite the advantages of SDN controllers, DDoS attacks are easier to perpetrate than on traditional networks. Because the controller is a single point of failure, if it fails, the… More >

  • Open Access

    ARTICLE

    R-IDPS: Real Time SDN-Based IDPS System for IoT Security

    Noman Mazhar1,2, Rosli Saleh1,*, Reza Zaba1,3, Muhammad Zeeshan4, M. Muzaffar Hameed1, Nauman Khan1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3099-3118, 2022, DOI:10.32604/cmc.2022.028285

    Abstract The advent of the latest technologies like the Internet of things (IoT) transforms the world from a manual to an automated way of lifestyle. Meanwhile, IoT sector open numerous security challenges. In traditional networks, intrusion detection and prevention systems (IDPS) have been the key player in the market to ensure security. The challenges to the conventional IDPS are implementation cost, computing power, processing delay, and scalability. Further, online machine learning model training has been an issue. All these challenges still question the IoT network security. There has been a lot of research for IoT based detection systems to secure the… More >

  • Open Access

    ARTICLE

    Iterative Dichotomiser Posteriori Method Based Service Attack Detection in Cloud Computing

    B. Dhiyanesh1,*, K. Karthick2, R. Radha3, Anita Venaik4

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1099-1107, 2023, DOI:10.32604/csse.2023.024691

    Abstract Cloud computing (CC) is an advanced technology that provides access to predictive resources and data sharing. The cloud environment represents the right type regarding cloud usage model ownership, size, and rights to access. It introduces the scope and nature of cloud computing. In recent times, all processes are fed into the system for which consumer data and cache size are required. One of the most security issues in the cloud environment is Distributed Denial of Service (DDoS) attacks, responsible for cloud server overloading. This proposed system ID3 (Iterative Dichotomiser 3) Maximum Multifactor Dimensionality Posteriori Method (ID3-MMDP) is used to overcome… More >

  • Open Access

    ARTICLE

    Detecting and Preventing of Attacks in Cloud Computing Using Hybrid Algorithm

    R. S. Aashmi1, T. Jaya2,*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 79-95, 2023, DOI:10.32604/iasc.2023.024291

    Abstract

    Cloud computing is the technology that is currently used to provide users with infrastructure, platform, and software services effectively. Under this system, Platform as a Service (PaaS) offers a medium headed for a web development platform that uniformly distributes the requests and resources. Hackers using Denial of service (DoS) and Distributed Denial of Service (DDoS) attacks abruptly interrupt these requests. Even though several existing methods like signature-based, statistical anomaly-based, and stateful protocol analysis are available, they are not sufficient enough to get rid of Denial of service (DoS) and Distributed Denial of Service (DDoS) attacks and hence there is a… More >

  • Open Access

    ARTICLE

    Detection of DDoS Attack in IoT Networks Using Sample Selected RNN-ELM

    S. Hariprasad1,*, T. Deepa1, N. Bharathiraja2

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1425-1440, 2022, DOI:10.32604/iasc.2022.022856

    Abstract The Internet of Things (IoT) is a global information and communication technology which aims to connect any type of device to the internet at any time and in any location. Nowadays billions of IoT devices are connected to the world, this leads to easily cause vulnerability to IoT devices. The increasing of users in different IoT-related applications leads to more data attacks is happening in the IoT networks after the fog layer. To detect and reduce the attacks the deep learning model is used. In this article, a hybrid sample selected recurrent neural network-extreme learning machine (hybrid SSRNN-ELM) algorithm that… More >

  • Open Access

    ARTICLE

    Dynamic Threshold-Based Approach to Detect Low-Rate DDoS Attacks on Software-Defined Networking Controller

    Mohammad Adnan Aladaileh, Mohammed Anbar*, Iznan H. Hasbullah, Abdullah Ahmed Bahashwan, Shadi Al-Sarawn

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1403-1416, 2022, DOI:10.32604/cmc.2022.029369

    Abstract The emergence of a new network architecture, known as Software Defined Networking (SDN), in the last two decades has overcome some drawbacks of traditional networks in terms of performance, scalability, reliability, security, and network management. However, the SDN is vulnerable to security threats that target its controller, such as low-rate Distributed Denial of Service (DDoS) attacks, The low-rate DDoS attack is one of the most prevalent attacks that poses a severe threat to SDN network security because the controller is a vital architecture component. Therefore, there is an urgent need to propose a detection approach for this type of attack… More >

  • Open Access

    ARTICLE

    Machine Learning with Dimensionality Reduction for DDoS Attack Detection

    Shaveta Gupta1, Dinesh Grover2, Ahmad Ali AlZubi3,*, Nimit Sachdeva4, Mirza Waqar Baig5, Jimmy Singla6

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2665-2682, 2022, DOI:10.32604/cmc.2022.025048

    Abstract With the advancement of internet, there is also a rise in cybercrimes and digital attacks. DDoS (Distributed Denial of Service) attack is the most dominant weapon to breach the vulnerabilities of internet and pose a significant threat in the digital environment. These cyber-attacks are generated deliberately and consciously by the hacker to overwhelm the target with heavy traffic that genuine users are unable to use the target resources. As a result, targeted services are inaccessible by the legitimate user. To prevent these attacks, researchers are making use of advanced Machine Learning classifiers which can accurately detect the DDoS attacks. However,… More >

  • Open Access

    ARTICLE

    Ensemble Deep Learning Models for Mitigating DDoS Attack in Software-Defined Network

    Fatmah Alanazi*, Kamal Jambi, Fathy Eassa, Maher Khemakhem, Abdullah Basuhail, Khalid Alsubhi

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 923-938, 2022, DOI:10.32604/iasc.2022.024668

    Abstract Software-defined network (SDN) is an enabling technology that meets the demand of dynamic, adaptable, and manageable networking architecture for the future. In contrast to the traditional networks that are based on a distributed control plane, the control plane of SDN is based on a centralized architecture. As a result, SDNs are susceptible to critical cyber attacks that exploit the single point of failure. A distributed denial of service (DDoS) attack is one of the most crucial and risky attacks, targeting the SDN controller and disrupting its services. Several researchers have proposed signature-based DDoS mitigation and detection techniques that rely on… More >

Displaying 1-10 on page 1 of 12. Per Page  

Share Link