Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    Intelligent Biomedical Electrocardiogram Signal Processing for Cardiovascular Disease Diagnosis

    R. Krishnaswamy1,*, B. Sivakumar2, B. Viswanathan3, Fahd N. Al-Wesabi4,5, Marwa Obayya6, Anwer Mustafa Hilal7

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 255-268, 2022, DOI:10.32604/cmc.2022.021995

    Abstract Automatic biomedical signal recognition is an important process for several disease diagnoses. Particularly, Electrocardiogram (ECG) is commonly used to identify cardiovascular diseases. The professionals can determine the existence of cardiovascular diseases using the morphological patterns of the ECG signals. In order to raise the diagnostic accuracy and reduce the diagnostic time, automated computer aided diagnosis model is necessary. With the advancements of artificial intelligence (AI) techniques, large quantity of biomedical datasets can be easily examined for decision making. In this aspect, this paper presents an intelligent biomedical ECG signal processing (IBECG-SP) technique for CVD diagnosis. The proposed IBECG-SP technique examines… More >

  • Open Access

    ARTICLE

    Convolutional Neural Network-Based Identity Recognition Using ECG at Different Water Temperatures During Bathing

    Jianbo Xu, Wenxi Chen*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1807-1819, 2022, DOI:10.32604/cmc.2022.021154

    Abstract This study proposes a convolutional neural network (CNN)-based identity recognition scheme using electrocardiogram (ECG) at different water temperatures (WTs) during bathing, aiming to explore the impact of ECG length on the recognition rate. ECG data was collected using non-contact electrodes at five different WTs during bathing. Ten young student subjects (seven men and three women) participated in data collection. Three ECG recordings were collected at each preset bathtub WT for each subject. Each recording is 18 min long, with a sampling rate of 200 Hz. In total, 150 ECG recordings and 150 WT recordings were collected. The R peaks were… More >

  • Open Access

    ARTICLE

    Automatic Heart Disease Detection by Classification of Ventricular Arrhythmias on ECG Using Machine Learning

    Khalid Mahmood Aamir1, Muhammad Ramzan1,2, Saima Skinadar1, Hikmat Ullah Khan3, Usman Tariq4, Hyunsoo Lee5, Yunyoung Nam5,*, Muhammad Attique Khan6

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 17-33, 2022, DOI:10.32604/cmc.2022.018613

    Abstract This paper focuses on detecting diseased signals and arrhythmias classification into two classes: ventricular tachycardia and premature ventricular contraction. The sole purpose of the signal detection is used to determine if a signal has been collected from a healthy or sick person. The proposed research approach presents a mathematical model for the signal detector based on calculating the instantaneous frequency (IF). Once a signal taken from a patient is detected, then the classifier takes that signal as input and classifies the target disease by predicting the class label. While applying the classifier, templates are designed separately for ventricular tachycardia and… More >

  • Open Access

    ARTICLE

    Automated Learning of ECG Streaming Data Through Machine Learning Internet of Things

    Mwaffaq Abu-Alhaija, Nidal M. Turab*

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 45-53, 2022, DOI:10.32604/iasc.2022.021426

    Abstract Applying machine learning techniques on Internet of Things (IoT) data streams will help achieve better understanding, predict future perceptions, and make crucial decisions based on those analytics. The collaboration between IoT, Big Data and machine learning can be found in different domains such as Health care, Smart cities, and Telecommunications. The aim of this paper is to develop a method for automated learning of electrocardiogram (ECG) streaming data to detect any heart beat anomalies. A promising solution is to use medical sensors that transfer vital signs to medical care computer systems, combined with machine learning, such that clinicians can get… More >

  • Open Access

    ARTICLE

    Design and Realization of Non Invasive Fetal ECG Monitoring System

    Abdulfattah Noorwali1, Ameni Yengui2,*, Kaiçar Ammous2, Anis Ammous1

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 455-466, 2022, DOI:10.32604/iasc.2022.020574

    Abstract Early fetal cardiac diseases and heart abnormalities can be detected and appropriately treated by monitoring fetal health during pregnancy. Advancements in computer sciences and the technology of sensors show that is possible to monitor fetal electrocardiogram (fECG). Both signal processing and experimental aspects are needed to be investigated to monitor fECG. In this study, we aim to design and realize a non invasive fECG monitoring system. In the first part of this work, a remote study process of the electrical activity of the heart is achieved. In fact, our proposed design considers transmitting the detected signals in real time using… More >

  • Open Access

    ARTICLE

    Heart Disease Diagnosis Using Electrocardiography (ECG) Signals

    V. R. Vimal1,*, P. Anandan2, N. Kumaratharan3

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 31-43, 2022, DOI:10.32604/iasc.2022.017622

    Abstract

    Electrocardiogram (ECG) monitoring models are commonly employed for diagnosing heart diseases. Since ECG signals are normally acquired for a longer time duration with high resolution, there is a need to compress the ECG signals for transmission and storage. So, a novel compression technique is essential in transmitting the signals to the telemedicine center to monitor and analyse the data. In addition, the protection of ECG signals poses a challenging issue, which encryption techniques can resolve. The existing Encryption-Then-Compression (ETC) models for multimedia data fail to properly maintain the trade-off between compression performance and signal quality. In this view, this study… More >

  • Open Access

    A Global Training Model for Beat Classification Using Basic Electrocardiogram Morphological Features

    Shubha Sumesh1, John Yearwood1, Shamsul Huda1 and Shafiq Ahmad2,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4503-4521, 2022, DOI:10.32604/cmc.2022.015474

    Abstract

    Clinical Study and automatic diagnosis of electrocardiogram (ECG) data always remain a challenge in diagnosing cardiovascular activities. The analysis of ECG data relies on various factors like morphological features, classification techniques, methods or models used to diagnose and its performance improvement. Another crucial factor in the methodology is how to train the model for each patient. Existing approaches use standard training model which faces challenges when training data has variation due to individual patient characteristics resulting in a lower detection accuracy. This paper proposes an adaptive approach to identify performance improvement in building a training model that analyze global training… More >

  • Open Access

    ARTICLE

    Arrhythmia and Disease Classification Based on Deep Learning Techniques

    Ramya G. Franklin1,*, B. Muthukumar2

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 835-851, 2022, DOI:10.32604/iasc.2022.019877

    Abstract Electrocardiography (ECG) is a method for monitoring the human heart’s electrical activity. ECG signal is often used by clinical experts in the collected time arrangement for the evaluation of any rhythmic circumstances of a topic. The research was carried to make the assignment computerized by displaying the problem with encoder-decoder methods, by using misfortune appropriation to predict standard or anomalous information. The two Convolutional Neural Networks (CNNs) and the Long Short-Term Memory (LSTM) fully connected layer (FCL) have shown improved levels over deep learning networks (DLNs) across a wide range of applications such as speech recognition, prediction etc., As CNNs… More >

  • Open Access

    REVIEW

    Review of Computational Techniques for the Analysis of Abnormal Patterns of ECG Signal Provoked by Cardiac Disease

    Revathi Jothiramalingam1, Anitha Jude2, Duraisamy Jude Hemanth2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 875-906, 2021, DOI: 10.32604/cmes.2021.016485

    Abstract The 12-lead ECG aids in the diagnosis of myocardial infarction and is helpful in the prediction of cardiovascular disease complications. It does, though, have certain drawbacks. For other electrocardiographic anomalies such as Left Bundle Branch Block and Left Ventricular Hypertrophy syndrome, the ECG signal with Myocardial Infarction is difficult to interpret. These diseases cause variations in the ST portion of the ECG signal. It reduces the clarity of ECG signals, making it more difficult to diagnose these diseases. As a result, the specialist is misled into making an erroneous diagnosis by using the incorrect therapeutic technique. Based on these concepts,… More >

  • Open Access

    ARTICLE

    An Attention Based Neural Architecture for Arrhythmia Detection and Classification from ECG Signals

    Nimmala Mangathayaru1,*, Padmaja Rani2, Vinjamuri Janaki3, Kalyanapu Srinivas4, B. Mathura Bai1, G. Sai Mohan1, B. Lalith Bharadwaj1

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2425-2443, 2021, DOI:10.32604/cmc.2021.016534

    Abstract Arrhythmia is ubiquitous worldwide and cardiologists tend to provide solutions from the recent advancements in medicine. Detecting arrhythmia from ECG signals is considered a standard approach and hence, automating this process would aid the diagnosis by providing fast, cost-efficient, and accurate solutions at scale. This is executed by extracting the definite properties from the individual patterns collected from Electrocardiography (ECG) signals causing arrhythmia. In this era of applied intelligence, automated detection and diagnostic solutions are widely used for their spontaneous and robust solutions. In this research, our contributions are two-fold. Firstly, the Dual-Tree Complex Wavelet Transform (DT-CWT) method is implied… More >

Displaying 21-30 on page 3 of 40. Per Page