Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,234)
  • Open Access

    ARTICLE

    Integrity of Thermal Actuators using the Concept of Energy Density

    C.P. Providakis1

    Structural Durability & Health Monitoring, Vol.3, No.1, pp. 29-34, 2007, DOI:10.3970/sdhm.2007.003.029

    Abstract Actuators are structures that give micro-electro-mechanical systems (MEMS) the ability to interact with their environment rather than just passively sensing it. Recent studies of MEMS thermal micro-actuators have shown that simple in design and production devices can provide deflection of the order of 10 μm at low voltages. Recently, metals and single-crystal silicon materials were included in the range of materials used for thermal actuators since they operate at lower temperatures than the commonly used (poly)silicon devices. These actuators are liable to meet the loads in service, so the corresponding integrity and stability analysis constitutes a… More >

  • Open Access

    ABSTRACT

    Time Dependent Cyclic Constitutive Model and its Application to Some Geotechnical Problems

    T. Tanaka1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.4, pp. 251-256, 2007, DOI:10.3970/icces.2007.004.251

    Abstract The viscoplastic constitutive relations with kinematic strain hardening-softening model for geomaterials are developed. The constitutive models include strain-rate dependent properties based on the thoery by Duvaut-Lions. The dynamic relaxation method for static problems and the dynamic analysis for earthquake responses are applied to boundary value problems using finite element methods. More >

  • Open Access

    ABSTRACT

    Identification Problems in Metal Forming

    Iwona Pokorska1, Andrzej Sluzalec2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.3, pp. 171-178, 2007, DOI:10.3970/icces.2007.004.171

    Abstract This work has been focused on a unified approach for parameter identification in metal forming processes of poroplastic materials. In order to solve the associated inverse problem a chosen functional is minimized by the use of gradient based methods and a sensitivity analysis. Several numerical and experimental results were presented. These are: the direct problem of simple compression, re-identification of flow stress and identification of loading functions. More >

  • Open Access

    ABSTRACT

    B-Spline Wavelet Galerkin Method for the Problems of Elastostatics

    S. Tanaka1, H. Okada1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.4, pp. 217-224, 2007, DOI:10.3970/icces.2007.003.217

    Abstract It has been recognized that the bottle-neck in solid/structural analyses using the finite element method is in their model generation phase. Methodologies that eliminate the needs for "elements" have been proposed by many researchers. They can be categorized into "meshless" and "virtually meshless" finite element methods. The "meshless" method may be represented by moving least square Ptrov-Galerkin (MLPG) method [1] and element free Galerkin Method (EFGM) [2]. The free-mesh method [3] and voxel finite element method [4], etc. are classified to be the "virtually meshless" approaches. The "meshless" methods eliminated needs for element connectivity information… More >

  • Open Access

    ABSTRACT

    A meshless method based on Daubechies wavelet for 2-D elastoplaticity problems

    Yanan Liu1, Yinghua liu1, Zhangzhi Cen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.3, pp. 139-144, 2007, DOI:10.3970/icces.2007.003.139

    Abstract In this paper, a Daubechies(DB) wavelet-based meshless method is proposed to analyze 2-D elastoplasticity problems. Using DB wavelet scaling functions and wavelet functions as basis functions to approximate the unknown field functions, there is no need to construct the shape functions costly as done in FEM and conventional meshless methods. Incremental formulations are established for solution of 2-D elastoplasticity problems. In addition, the property of DB wavelet is used to make the method concise in formulations, flexible in applications and easy to realize. Due to the lack of Kroneker delta properties in scaling functions and More >

  • Open Access

    ABSTRACT

    H-matrix preconditioners for saddle-point systems from meshfree discretization 1

    Suely Oliveira2, Fang Yang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.2, pp. 113-120, 2007, DOI:10.3970/icces.2007.003.113

    Abstract In this paper we describe and compare preconditioners for saddle-point systems obtained from meshfree discretizations, using the concepts of hierarchical (or H-)matrices. Previous work by the authors using this approach did not use H-matrix techniques throughout, as is done here. Comparison shows the method described here to be better than the author's previous method, an AMG method adapted to saddle point systems, and conventional iterative methods such as JOR. More >

  • Open Access

    ABSTRACT

    The Lie-Group Shooting Method for Quasi-Boundary Regularization of Backward Heat Conduction Problems

    Chih-Wen Chang1, Chein-Shan Liu2, Jiang-Ren Chang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.2, pp. 69-80, 2007, DOI:10.3970/icces.2007.003.069

    Abstract By using a quasi-boundary regularization we can formulate a two-point boundary value problem of the backward heat conduction equation. The ill-posed problem is analyzed by using the semi-discretization numerical schemes. Then, the resulting ordinary differential equations in the discretized space are numerically integrated towards the time direction by the Lie-group shooting method to find the unknown initial conditions. The key point is based on the erection of a one-step Lie group element G(T) and the formation of a generalized mid-point Lie group element G(r). Then, by imposing G(T) = G(r) we can seek the missing More >

  • Open Access

    ABSTRACT

    About the POD Model Reduction in Computational Mechanics for Nonlinear Continuous Dynamical Systems

    R. Sampaio1, C. Soize2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.4, pp. 93-100, 2007, DOI:10.3970/icces.2007.002.093

    Abstract An analysis of the efficiency of the reduced models constructed using the POD-basis and the LIN-basis is presented in nonlinear dynamics for continuous elastic systems discretized by the finite element method. The POD-basis is the basis constructed with the POD method while the LIN-basis is the basis derived from the generalized eigenvalue problem associated with the underlying linear conservative part of the system and usually called the eigenmodes of vibration. The efficiency of the POD-basis or the LIN-basis is related to the speed of convergence in the frequency domain of the solution constructed with the More >

  • Open Access

    ABSTRACT

    Partitioned Formulation for Solving 3D Frictional Contact Problems with BEM using Localized Lagrange Multipliers

    L. Rodríguez-Tembleque1, J.A. González1, R. Abascal1, K.C. Park2, C.A. Felippa2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.1, pp. 21-28, 2007, DOI:10.3970/icces.2007.002.021

    Abstract This work presents an interface treatment method based on localized Lagrange Multipliers (LLM) to solve frictional contact problems between two 3D elastic bodies. The connection between the solids is done using a displacement frame intercalated between the interfaces meshes, and the LLM are collocated at the interface nodes. The Boundary Elements Method (BEM) is used to compute the influence coefficients of the surface points involved, and contact conditions are imposed using projection functions. The LLM provides a partitioned formulation which preserves software modularity, facilitates non-matching meshes treatment and passes the contact patch test [4]. More >

  • Open Access

    ABSTRACT

    On Three-dimensional Effects in Propagation of Surface-breaking Cracks

    E. Schnack1, A. Dimitrov2, F.-G. Buchholz3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.4, pp. 139-146, 2007, DOI:10.3970/icces.2007.001.139

    Abstract In fracture mechanics, we have to discuss corner and edge singularities for two- and three-dimensional problems in isotropic and layered anisotropic continua. To say something about the behavior of crack propagation starting from corners and edges, we need the information about stress asymptotics in the vicinity of three-dimensional corner points. Thus, in this paper we can study two aspects: the interface crack in layered unisotropic materials with re-entrant corners and surface cracks for the homogeneous isotropic continua. To study the effect of geometrical singularities on the stress intensity factors, we have to define generalized stress… More >

Displaying 1141-1150 on page 115 of 1234. Per Page