Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,157)
  • Open Access

    ARTICLE

    Advanced BERT and CNN-Based Computational Model for Phishing Detection in Enterprise Systems

    Brij B. Gupta1,2,3,4,*, Akshat Gaurav5, Varsha Arya6,7, Razaz Waheeb Attar8, Shavi Bansal9, Ahmed Alhomoud10, Kwok Tai Chui11

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2165-2183, 2024, DOI:10.32604/cmes.2024.056473 - 31 October 2024

    Abstract Phishing attacks present a serious threat to enterprise systems, requiring advanced detection techniques to protect sensitive data. This study introduces a phishing email detection framework that combines Bidirectional Encoder Representations from Transformers (BERT) for feature extraction and CNN for classification, specifically designed for enterprise information systems. BERT’s linguistic capabilities are used to extract key features from email content, which are then processed by a convolutional neural network (CNN) model optimized for phishing detection. Achieving an accuracy of 97.5%, our proposed model demonstrates strong proficiency in identifying phishing emails. This approach represents a significant advancement in More >

  • Open Access

    ARTICLE

    Deep Learning-Driven Anomaly Detection for IoMT-Based Smart Healthcare Systems

    Attiya Khan1, Muhammad Rizwan2, Ovidiu Bagdasar2,3, Abdulatif Alabdulatif4,*, Sulaiman Alamro4, Abdullah Alnajim5

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2121-2141, 2024, DOI:10.32604/cmes.2024.054380 - 31 October 2024

    Abstract The Internet of Medical Things (IoMT) is an emerging technology that combines the Internet of Things (IoT) into the healthcare sector, which brings remarkable benefits to facilitate remote patient monitoring and reduce treatment costs. As IoMT devices become more scalable, Smart Healthcare Systems (SHS) have become increasingly vulnerable to cyberattacks. Intrusion Detection Systems (IDS) play a crucial role in maintaining network security. An IDS monitors systems or networks for suspicious activities or potential threats, safeguarding internal networks. This paper presents the development of an IDS based on deep learning techniques utilizing benchmark datasets. We propose More >

  • Open Access

    ARTICLE

    Optimizing Bearing Fault Detection: CNN-LSTM with Attentive TabNet for Electric Motor Systems

    Alaa U. Khawaja1, Ahmad Shaf2,*, Faisal Al Thobiani3, Tariq Ali4, Muhammad Irfan5, Aqib Rehman Pirzada2, Unza Shahkeel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2399-2420, 2024, DOI:10.32604/cmes.2024.054257 - 31 October 2024

    Abstract Electric motor-driven systems are core components across industries, yet they’re susceptible to bearing faults. Manual fault diagnosis poses safety risks and economic instability, necessitating an automated approach. This study proposes FTCNNLSTM (Fine-Tuned TabNet Convolutional Neural Network Long Short-Term Memory), an algorithm combining Convolutional Neural Networks, Long Short-Term Memory Networks, and Attentive Interpretable Tabular Learning. The model preprocesses the CWRU (Case Western Reserve University) bearing dataset using segmentation, normalization, feature scaling, and label encoding. Its architecture comprises multiple 1D Convolutional layers, batch normalization, max-pooling, and LSTM blocks with dropout, followed by batch normalization, dense layers, and More >

  • Open Access

    ARTICLE

    Arabic Dialect Identification in Social Media: A Comparative Study of Deep Learning and Transformer Approaches

    Enas Yahya Alqulaity1, Wael M.S. Yafooz1,*, Abdullah Alourani2, Ayman Jaradat3

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 907-928, 2024, DOI:10.32604/iasc.2024.055470 - 31 October 2024

    Abstract Arabic dialect identification is essential in Natural Language Processing (NLP) and forms a critical component of applications such as machine translation, sentiment analysis, and cross-language text generation. The difficulties in differentiating between Arabic dialects have garnered more attention in the last 10 years, particularly in social media. These difficulties result from the overlapping vocabulary of the dialects, the fluidity of online language use, and the difficulties in telling apart dialects that are closely related. Managing dialects with limited resources and adjusting to the ever-changing linguistic trends on social media platforms present additional challenges. A strong… More >

  • Open Access

    ARTICLE

    Fusion of Type-2 Neutrosophic Similarity Measure in Signatures Verification Systems: A New Forensic Document Analysis Paradigm

    Shahlaa Mashhadani1,*, Wisal Hashim Abdulsalam1, Oday Ali Hassen2, Saad M. Darwish3

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 805-828, 2024, DOI:10.32604/iasc.2024.054611 - 31 October 2024

    Abstract Signature verification involves vague situations in which a signature could resemble many reference samples or might differ because of handwriting variances. By presenting the features and similarity score of signatures from the matching algorithm as fuzzy sets and capturing the degrees of membership, non-membership, and indeterminacy, a neutrosophic engine can significantly contribute to signature verification by addressing the inherent uncertainties and ambiguities present in signatures. But type-1 neutrosophic logic gives these membership functions fixed values, which could not adequately capture the various degrees of uncertainty in the characteristics of signatures. Type-1 neutrosophic representation is also… More >

  • Open Access

    ARTICLE

    IQAOA for Two Routing Problems: A Methodological Contribution with Application to TSP and VRP

    Eric Bourreau1, Gérard Fleury2, Philippe Lacomme2,*

    Journal of Quantum Computing, Vol.6, pp. 25-51, 2024, DOI:10.32604/jqc.2024.048792 - 25 October 2024

    Abstract The paper presents a novel quantum method for addressing two fundamental routing problems: the Traveling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP), both central to routing challenges. The proposed method, named the Indirect Quantum Approximate Optimization Algorithm (IQAOA), leverages an indirect solution representation using ranking. Our contribution focuses on two main areas: 1) the indirect representation of solutions, and 2) the integration of this representation into an extended version of QAOA, called IQAOA. This approach offers an alternative to QAOA and includes the following components: 1) a quantum parameterized circuit designed to simulate… More >

  • Open Access

    ARTICLE

    Probabilistic Calculation of Tidal Currents for Wind Powered Systems Using PSO Improved LHS

    Hongsheng Su, Shilin Song*, Xingsheng Wang

    Energy Engineering, Vol.121, No.11, pp. 3289-3303, 2024, DOI:10.32604/ee.2024.054643 - 21 October 2024

    Abstract This paper introduces the Particle Swarm Optimization (PSO) algorithm to enhance the Latin Hypercube Sampling (LHS) process. The key objective is to mitigate the issues of lengthy computation times and low computational accuracy typically encountered when applying Monte Carlo Simulation (MCS) to LHS for probabilistic trend calculations. The PSO method optimizes sample distribution, enhances global search capabilities, and significantly boosts computational efficiency. To validate its effectiveness, the proposed method was applied to IEEE34 and IEEE-118 node systems containing wind power. The performance was then compared with Latin Hypercubic Important Sampling (LHIS), which integrates significant sampling More >

  • Open Access

    ARTICLE

    Seasonal Short-Term Load Forecasting for Power Systems Based on Modal Decomposition and Feature-Fusion Multi-Algorithm Hybrid Neural Network Model

    Jiachang Liu1,*, Zhengwei Huang2, Junfeng Xiang1, Lu Liu1, Manlin Hu1

    Energy Engineering, Vol.121, No.11, pp. 3461-3486, 2024, DOI:10.32604/ee.2024.054514 - 21 October 2024

    Abstract To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance, this paper proposes a seasonal short-term load combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model. Specifically, the characteristics of load components are analyzed for different seasons, and the corresponding models are established. First, the improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) method is employed to decompose the system load for all four seasons, and the new sequence is obtained through reconstruction based on the… More >

  • Open Access

    ARTICLE

    Modular System of Cascaded Converters Based on Model Predictive Control

    Chunxue Wen, Yaoquan Wei*, Peng Wang, Jianlin Li, Jinghua Zhou, Qingyun Li

    Energy Engineering, Vol.121, No.11, pp. 3241-3261, 2024, DOI:10.32604/ee.2024.051810 - 21 October 2024

    Abstract A modular system of cascaded converters based on model predictive control (MPC) is proposed to meet the application requirements of multiple voltage levels and electrical isolation in renewable energy generation systems. The system consists of a Buck/Boost + CLLLC cascaded converter as a submodule, which is combined in series and parallel on the input and output sides to achieve direct-current (DC) voltage transformation, bidirectional energy flow, and electrical isolation. The CLLLC converter operates in DC transformer mode in the submodule, while the Buck/Boost converter participates in voltage regulation. This article establishes a suitable mathematical model More >

  • Open Access

    ARTICLE

    Efficient and Cost-Effective Vehicle Detection in Foggy Weather for Edge/Fog-Enabled Traffic Surveillance and Collision Avoidance Systems

    Naeem Raza1, Muhammad Asif Habib1, Mudassar Ahmad1, Qaisar Abbas2,*, Mutlaq B. Aldajani2, Muhammad Ahsan Latif3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 911-931, 2024, DOI:10.32604/cmc.2024.055049 - 15 October 2024

    Abstract Vision-based vehicle detection in adverse weather conditions such as fog, haze, and mist is a challenging research area in the fields of autonomous vehicles, collision avoidance, and Internet of Things (IoT)-enabled edge/fog computing traffic surveillance and monitoring systems. Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time. To evaluate vision-based vehicle detection performance in foggy weather conditions, state-of-the-art Vehicle Detection in Adverse Weather Nature (DAWN) and Foggy Driving (FD) datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle… More >

Displaying 31-40 on page 4 of 1157. Per Page