Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (91)
  • Open Access

    ARTICLE

    Silencing of Btbd7 Inhibited Epithelial–Mesenchymal Transition and Chemoresistance in CD133+ Lung Carcinoma A549 Cells

    Li-Zhou Fang*, Jian-Qing Zhang*, Ling Liu*, Wei-Ping Fu*, Jing-Kui Shu*, Jia-Gang Feng*, Xiao Liang

    Oncology Research, Vol.25, No.5, pp. 819-829, 2017, DOI:10.3727/096504016X14772349843854

    Abstract Cancer stem cells (CSCs) are responsible for tumorigenesis and recurrence, so targeting CSCs is an effective method to potentially cure cancer. BTB/POZ domain-containing protein 7 (Btbd7) has been found in various cancers, including lung cancer and liver cancer, but the role of Btbd7 in non-small cell lung cancer (NSCLC), CSC self-renewal, and chemoresistance is still unknown. Therefore, in this study we found that the ratio of tumor sphere formation and stem cell transcription factors in CD133+ cells was dramatically enhanced compared to parental cells, which indicated successful sorting of CD133+ cells from A549. Meanwhile, Btbd7 and More >

  • Open Access

    ARTICLE

    Downregulation of Ubiquitin-Specific Protease 22 Inhibits Proliferation, Invasion, and Epithelial–Mesenchymal Transition in Osteosarcoma Cells

    Dengfeng Zhang1, Feng Jiang1, Xiao Wang, Guojun Li

    Oncology Research, Vol.25, No.5, pp. 743-751, 2017, DOI:10.3727/096504016X14772395226335

    Abstract Ubiquitin-specific protease 22 (USP22), a novel deubiquitinating enzyme, belongs to an extended family of proteins that have ubiquitin hydrolase activity. Recently, USP22 has attracted widespread attention because of its implication in carcinogenesis. However, there have been no studies, to our knowledge, investigating the expression of USP22 in osteosarcoma (OS) and its association with OS progression. In this study, we explored the role of USP22 in OS. We demonstrated that USP22 was highly expressed in OS tissue and cell lines. Downregulation of USP22 inhibited OS cell proliferation, invasion, and epithelial–mesenchymal transition (EMT) in vitro. In addition, More >

  • Open Access

    ARTICLE

    TRIM11 Upregulation Contributes to Proliferation, Invasion, and EMT of Hepatocellular Carcinoma Cells

    Zewei Zhang*1, Chao Xu†1, Xiafang Zhang†1, Lulu Huang, Cheng Zheng, Haitao Chen, Yan Wang, Haixing Ju§, Qinghua Yao

    Oncology Research, Vol.25, No.5, pp. 691-699, 2017, DOI:10.3727/096504016X14774897404770

    Abstract The tripartite motif-containing protein 11 (TRIM11), a member of the TRIM protein family, has attracted much attention because of its involvement in the development of the central nervous system. It has gained renewed focus because of its newly found function in promoting tumors. However, little is known about its role in hepatocellular carcinoma (HCC). In the present study, we found TRIM11 to be overexpressed in HCC tissues and cell lines. Downregulation of TRIM11 inhibited HCC cell proliferation and invasion in vitro and in vivo as well as suppressed the epithelial–mesenchymal transition (EMT) process. In addition, More >

  • Open Access

    ARTICLE

    FOXR2 Promotes the Proliferation, Invasion, and Epithelial–Mesenchymal Transition in Human Colorectal Cancer Cells

    Sheng-Qiang Lu*1, Yan Qiu†1, Wei-Jie Dai, Xiao-Yu Zhang§

    Oncology Research, Vol.25, No.5, pp. 681-689, 2017, DOI:10.3727/096504016X14771034190471

    Abstract Forkhead box R2 (FOXR2), a member of the FOX gene family, has not been very well investigated for its role in cancer. A recent study has shown that FOXR2 is highly expressed in breast cancer samples and is associated with poor prognosis. In addition, FOXR2 was identified as an oncogene in medulloblastoma. Nevertheless, whether FOXR2 plays a role in colorectal cancer (CRC) remains unclear. In the present study, we conducted several in vitro and in vivo studies to investigate the expression and effect of FOXR2 in CRC. The study results demonstrated that FOXR2 was upregulated More >

  • Open Access

    ARTICLE

    CDGSH Iron Sulfur Domain 2 Activates Proliferation and EMT of Pancreatic Cancer Cells via Wnt/β-Catenin Pathway and Has Prognostic Value in Human Pancreatic Cancer

    Yang Yang, Yuan-song Bai, Qing Wang

    Oncology Research, Vol.25, No.4, pp. 605-615, 2017, DOI:10.3727/096504016X14767450526417

    Abstract Recently, increasing evidence has shown that CDGSH iron sulfur domain 2 (CISD2) is involved in the initiation and metastasis of several cancers. However, the evidence of its potential role in pancreatic cancer is still lacking. In our present study, CISD2 was found to be increased in pancreatic cancer samples and multiple cell lines. Moreover, statistical analysis revealed that a high level of CISD2 was related to advanced clinical stage, advanced T-stage, positive vascular invasion, positive distant metastasis, and larger tumor size. In addition, multivariate analysis suggests that CISD2 was an independent prognostic factor in pancreatic… More >

  • Open Access

    ARTICLE

    ZNRF3 Inhibits the Invasion and Tumorigenesis in Nasopharyngeal Carcinoma Cells by Inactivating the Wnt/β-Catenin Pathway

    Zhongwei Wang, Yali Wang, Hongtao Ren, Yingying Jin, Ya Guo

    Oncology Research, Vol.25, No.4, pp. 571-577, 2017, DOI:10.3727/97818823455816X14760478220149

    Abstract Zinc and ring finger 3 (ZNRF3), which belongs to the E3 ubiquitin ligase family, is involved in the progression and development of cancer. However, the expression and function of ZNRF3 in human nasopharyngeal carcinoma (NPC) remain unclear. Thus, the aim of this study was to investigate the role of ZNRF3 in human NPC. Our results showed that ZNRF3 was downregulated in NPC cell lines. Restoration of ZNRF3 significantly inhibited the proliferation of NPC cells and tumor xenograft growth in vivo. In addition, overexpression of ZNRF3 suppressed migration and invasion, as well as attenuated the epithelial–mesenchymal More >

  • Open Access

    ARTICLE

    Tripartite Motif 16 Inhibits the Migration and Invasion in Ovarian Cancer Cells

    Hongwei Tan, Jin Qi, Guanghua Chu, Zhaoyang Liu

    Oncology Research, Vol.25, No.4, pp. 551-558, 2017, DOI:10.3727/096504016X14758370595285

    Abstract Tripartite motif 16 (TRIM16), a member of the RING B-box coiled-coil (RBCC)/tripartite motif (TRIM) protein family, has been shown to play a role in tumor development and progression. However, the role of TRIM16 in ovarian cancer has never been revealed. Thus, in this study, we investigated the roles and mechanisms of TRIM16 in ovarian cancer. Our results demonstrated that TRIM16 expression was low in ovarian cancer cell lines. In addition, overexpression of TRIM16 significantly inhibited the migration and invasion in vitro, as well as suppressed the epithelial–mesenchymal transition (EMT) phenotype in ovarian cancer cells. Furthermore, More >

  • Open Access

    ARTICLE

    miR-218 Inhibits Proliferation, Migration, and EMT of Gastric Cancer Cells by Targeting WASF3

    Guojun Wang, Yang Fu, Guanghui Liu, Yanwei Ye, Xiefu Zhang

    Oncology Research, Vol.25, No.3, pp. 355-364, 2017, DOI:10.3727/096504016X14738114257367

    Abstract MicroRNAs (miRNAs) play an important role in carcinogenesis. miR-218 is one of the most known miRNAs and has been demonstrated to inhibit progression in gastric cancer. However, the underlying molecular mechanism is not established. In this study, qRT-PCR and Western blot indicated that miR-218 was downregulated in gastric cancer cell lines SGC7901 and BGC823 compared to that in normal gastric epithelial cell line GES-1. MTT and wound scratch assays suggested that overexpression of miR-218 markedly suppressed cell proliferation, migration, and EMT of gastric cancer cells. Furthermore, we proved that WASF3 was a direct target of More >

  • Open Access

    ARTICLE

    Isolation and Characterization of Fast-Migrating Human Glioma Cells in the Progression of Malignant Gliomas

    Vivian Adamski*, Anne Dorothée Schmitt*, Charlotte Flüh*, Michael Synowitz*, Kirsten Hattermann†1, Janka Held-Feindt*1

    Oncology Research, Vol.25, No.3, pp. 341-353, 2017, DOI:10.3727/096504016X14737243054982

    Abstract Gliomas are the most common primary brain tumors. The most malignant form, the glioblastoma multiforme (GBM; WHO IV), is characterized by an invasive phenotype, which enables the tumor cells to infiltrate into adjacent brain tissue. When investigating GBM migration and invasion properties in vitro, in most cases GBM cell lines were analyzed. Comprehensive investigations focusing on progression-dependent characteristics of migration processes using fresh human glioma samples of different malignancy grades do not exist. Thus, we isolated fast-migrating tumor cells from fresh human glioma samples of different malignancy grades (astrocytomas WHO grade II, grade III, GBM,… More >

  • Open Access

    ARTICLE

    ABCB5–ZEB1 Axis Promotes Invasion and Metastasis in Breast Cancer Cells

    Juntao Yao*†, Xuan Yao, Tao Tian*, Xiao Fu*, Wenjuan Wang*, Suoni Li§, Tingting Shi*, Aili Suo*, Zhiping Ruan*, Hui Guo*, Kejun Nan*, Xiongwei Huo

    Oncology Research, Vol.25, No.3, pp. 305-316, 2017, DOI:10.3727/096504016X14734149559061

    Abstract ABCB5 belongs to the ATP-binding cassette (ABC) superfamily, which is recognized for playing a role in the failure of chemotherapy. ABCB5 has also been found to be overexpressed at the transcriptional level in a number of cancer subtypes, including breast cancer. However, the exact mechanism ABCB5 uses on cancer cell metastasis is still unclear. In the present study, we demonstrate that ABCB5 expression was increased in metastatic tissues when compared with nonmetastatic tissues. ABCB5 can significantly enhance metastasis and epithelial–mesenchymal transition (EMT), while knockdown of ABCB5 inhibited these processes. Microarray analysis indicated that ZEB1 may More >

Displaying 61-70 on page 7 of 91. Per Page