Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18,755)
  • Open Access

    ARTICLE

    Computational Fluid Dynamics Modeling of the Effect Of Rotation During Reaming into the Intramedullary Canal of a Long Bone

    J. Bahen1, O. Gaber1, K. Behdinan2, J. De Beer3, P. Zalzal4, M. Papini1, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 343-352, 2005, DOI:10.3970/fdmp.2005.001.343

    Abstract The penetration of the reamer into the medullary cavity can be compared to a piston entering a cylinder filled with viscous fluid. When the flutes of the reamer are clogged with bone debris, fat and marrow, the piston effect is magnified and larger pressures are usually obtained. This paper considers a reamer with clogged flutes and investigates whether the rotation speed of the reamer has a significant influence on the pressure within the intramedullary cavity. The effect of reamer rotation speed on the pressure distribution within the bone is investigated numerically by solving the full More >

  • Open Access

    ARTICLE

    A High Resolution Pressure-Based Method for Compressible Fluid Flow

    M.H. Djavareshkian1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 329-342, 2005, DOI:10.3970/fdmp.2005.001.329

    Abstract A pressure-based Euler scheme, based on a collocated grid arrangement is described. The newly developed algorithm has two new prominent features: (i) the use of normalized variables to bound the convective fluxes and (ii) the use of a high-resolution scheme in calculating interface density values to enhance the shock-capturing property of the algorithm. The algorithm is first tested for flows at different Mach numbers ranging from subsonic to supersonic on a bump in a channel geometry; then the results are compared with the corresponding ones obtained without the bounded scheme in the correction step. The More >

  • Open Access

    ARTICLE

    Numerical Study of Low Frequency G-jitter Effect on Thermal Diffusion

    Y. Yan1, V. Shevtsova2, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 315-328, 2005, DOI:10.3970/fdmp.2005.001.315

    Abstract Convection has a major impact on diffusion in fluid mixtures either on the Earth or in the microgravity condition. G-jitters, as the primary source that induces the vibrational convection in space laboratories, should be studied thoroughly in order to improve the diffusion-dominated fluid science experiments. In this paper we consider the effect of g-jitters on thermal diffusion. The mixture water-isopropanol (90:10 wt%) bounded in a cubic cell is simulated with a lateral heating and various vibration conditions. The fluid flow, concentration and temperature distributions are thoroughly analyzed for different g-jitter scenarios. It is shown that… More >

  • Open Access

    ARTICLE

    Thermal Communication between Two Vertical Systems of Free and Forced Convection via Heat Conduction across a Separating Wall

    M. Mosaad2, A. Ben-Nakhi2, M. H. Al-Hajeri2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 301-314, 2005, DOI:10.3970/fdmp.2005.001.301

    Abstract This work deals with the problem of thermal interaction between two fluid media at two different bulk temperatures and separated by a vertical plate. The problem is analyzed by taking into account the heat conduction across the separating plate. The flow configuration considered is one in which the two vertical boundary layers of free and forced convection developed on plate sides are in parallel flow. The dimensionless parameters governing the thermal interaction mechanisms are analytically deduced. The obtained results are presented in graphs to demonstrate the heat transfer characteristics of investigated phenomenon. The work reports More >

  • Open Access

    ARTICLE

    On the Stability of the Hadley Flow under the Action of an Acoustic Wave

    M.K. Achour1, S. Kaddeche2, A. Gharbi2, H. Ben Hadid3, D. Henry3

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 277-284, 2005, DOI:10.3970/fdmp.2005.001.277

    Abstract The effects of an acoustic wave on the instabilities occurring in a lateral differentially heated cavity are investigated numerically. Linear stability results show that the acoustic wave affects significantly the instability characteristics of such a Hadley flow. Indeed, the sound field is found to stabilize both two dimensional transverse stationary and three dimensional longitudinal oscillatory instabilities which are the most critical modes affecting the buoyant convection in the fluid layer. Nevertheless, when stabilized by an acoustic wave, the 2D modes turn from stationary to oscillatory, with the known consequences of such a change on mass More >

  • Open Access

    ARTICLE

    Fluid Dynamics of a Micro-Bioreactor for Tissue Engineering

    P. Yu1, T. S. Lee1, Y. Zeng1, H. T. Low2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.3, pp. 235-246, 2005, DOI:10.3970/fdmp.2005.001.235

    Abstract A numerical model is developed for the investigation of flow field and mass transport in a micro-bioreactor, of working volume below 5 ml, in which medium mixing is generated by a magnetic stirrer-rod rotating on the bottom. The flow-field results show that a recirculation region exists above the stirrer rod and rotates with it; the related fluid mixing is characterized by a circulation coefficient of up to 0.2 which is about five times smaller than that of a one-litre stirred-tank bioreactor. The oxygen transfer coefficient is less than 5 h-1 which is two orders smaller than… More >

  • Open Access

    ARTICLE

    Coalescence and Non-coalescence Phenomena in Multi-material Problems and Dispersed Multiphase Flows: Part 2, A Critical Review of CFD Approaches

    Marcello Lappa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.3, pp. 213-234, 2005, DOI:10.3970/fdmp.2005.001.213

    Abstract The physical properties of many emulsions and metal alloys strongly depend on the multiphase morphology which is controlled to a great degree by particle-particle interaction during the related processing. In the present article significant effort is devoted to illustrate the philosophy of modeling for these phenomena and some insights into the physics. Within such a context working numerical techniques that have enjoyed a widespread use over recent years are presented and/or reviewed. Finally a focused and critical comparison of these possible approaches is reported illustrating advantages and disadvantages, strengths and weaknesses, past history and future More >

  • Open Access

    ARTICLE

    Coalescence and Non-coalescence Phenomena in Multi-material Problems and Dispersed Multiphase Flows: Part 1, A Critical Review of Theories

    Marcello Lappa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.3, pp. 201-212, 2005, DOI:10.3970/fdmp.2005.001.201

    Abstract The manuscript deals with a presentation of the most reliable theories introduced over the years to model particle coalescence and non-coalescence phenomena at both macroscopic and microscopic length scales (including historical developments and very recent contributions) and moves through other macrophysical mechanisms that can cause spatial separation of the fluid phases (liquid-liquid or liquid-gas) in multi-material problems, while providing a rigorous theoretical framework for deeper understanding of how drop (or bubble) migration due to gravity and/or Marangoni effects can interact cooperatively with coalescence to significantly affect the multiphase pattern formation, its evolutionary progress as well More >

  • Open Access

    ARTICLE

    Review: Possible strategies for the control and stabilization of Marangoni flow in laterally heated floating zones

    Marcello Lappa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.2, pp. 171-188, 2005, DOI:10.3970/fdmp.2005.001.171

    Abstract The paper presents a comparative and critical analysis of some theoretical/experimental/numerical arguments concerning the possible stabilization of the surface-tension-driven (Marangoni) flow in the Floating Zone technique and in various related fluid-dynamic models. It is conceived as a natural extension of the focused overview published in Cryst. Res. Tech. 40(6), 531, (2005) where much room was devoted to discuss the intrinsic physical mechanisms responsible for three-dimensional and oscillatory flows in a variety of technological processes. Here, a significant effort is provided to illustrate the genesis of possible control strategies (many of which are still in a More >

  • Open Access

    ARTICLE

    How Does Buoyancy-driven Convection Affect Biological Macromolecular Crystallization? An Analysis of Microgravity and Hypergravity Effects by Means of Magnetic Field Gradients

    N.I. Wakayama1, D.C. Yin2, J.W. Qi3

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.2, pp. 153-170, 2005, DOI:10.3970/fdmp.2005.001.153

    Abstract The production of crystals of adequate size and high quality is the "bottleneck'' for three-dimensional structure analysis of protein crystals. In this work, in order to shed additional light on the (still controversial) beneficial effect of microgravity on crystal growth, we focus on recent advanced experimental and theoretical research about the effects of buoyancy-driven convection on protein crystallization. In the light of the numerical studies the following major outcomes can be highlighted: (1) when the crystal size exceeds several dozens of µm, buoyancy-driven convection dominates solute transport near the growing crystal and the crystal growth rate… More >

Displaying 18441-18450 on page 1845 of 18755. Per Page