Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19,227)
  • Open Access

    PROCEEDINGS

    Radio Frequency-Assisted Curing of On-Chip Printed Carbon Nanotube/silicone Heatsinks Produced by Material Extrusion 3D Printing

    Thang Q. Tran1,2, Anubhav Sarmah1, Ethan M. Harkin1, Smita Shivraj Dasari1, Kailash Arole1, Matthew Cupich1, Aniela J. K. Wright1, Hang Li Seet2, Sharon Mui Ling Nai2, Micah J. Green1,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012057

    Abstract With the rapid development of high-power integrated electronic devices, many polymer-based thermal management devices have been developed to address the problem of overheating and to improve the reliability and lifetime of electronic devices. Here we demonstrate the material extrusion 3D printing of carbon nanotube (CNT)/silicone heatsinks directly onto electronic devices. CNTs were used as a conductive nanofiller and a rheological modifier to improve thermal and electrical conductivities and the printability of the silicone inks, respectively. Additionally, CNTs are also a radio frequency (RF) susceptor, so the integration of CNTs into the silicone matrix allowed for… More >

  • Open Access

    PROCEEDINGS

    4D Printing of Polylactic Acid Hinges: A Study on Shape Memory Factors for Generative Design in a Digital Library Framework for Soft Robotics

    Jiazhao Huang1, Xiaoying Qi1, Chu Long Tham1, Hang Li Seet1, Sharon Mui Ling Nai1, David William Rosen1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012040

    Abstract The emergence of 4D printing introduces stimuli-responsive, shape-changing capabilities through additive manufacturing (AM) and smart materials, has advanced the field of soft robotics. However, there are currently lack of methods or tools that capable of aiding in the generative design of 4D AM structures. The current generative design procedure for 4D AM structures often lacks transferability among various structures due to limited understanding of shape memory material behaviors for soft robotics. To develop such a digital library, investigation of fundamental elements, such as material properties of shape memory materials, geometry parameters of design primitives, and… More >

  • Open Access

    PROCEEDINGS

    Boundary Data Immersion Method for the Simulation of Fluid-Structure Interaciton Based on DGM

    Yuxiang Peng1,*, Pengnan Sun1, Niannian Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011902

    Abstract Immersed boundary method (IBM) has been widely applied in the simulation of fluid-structure interaction problems. The traditional direct force model is less accurate, and the sharp-interface approaches involve complex topological operations which are not conducive to dealing with complex structures. The boundary data immersion method (BDIM) is a new fluid-structure coupling scheme that does not need to cut the mesh and can be extended to reach second-order accuracy. However, the traditional boundary data immersion method needs special treatment to deal with the sharp corners of the structure. In the present work, the volume fraction of More >

  • Open Access

    PROCEEDINGS

    Tapering Optimization of Double-Double Laminates

    Dan Wang1,*, Zhoucheng Su1, Sridhar Narayanaswamy1, Stephen Tsai2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011821

    Abstract Double-Double (DD) laminates are novel layups made up of two groups of angle plies. The assembly of local sub-ply blocks provides homogenized material properties and can achieve the unique laminate layup for the whole structure with different sub-ply block repeats. However, the thickness thinning will bring buckling forward leading to structural failure. Here we work on searching the optimal thickness tapering strategy of DD laminates to achieve the highest buckling load with the given structure weight. The DD laminate is modelled as a shell with the thickness for each element defined as different repeats of More >

  • Open Access

    PROCEEDINGS

    Investigation of the Effects of Bone Material Modelling Strategies on the Biomechanics of the Thoracolumbar Spine Using Finite Element Method

    Ching-Chi Hsu1,*, Hsin-Hao Lin1, Kao-Shang Shih2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011792

    Abstract Decompression surgery is one of the useful methods to relieve the pressure on the spinal cord and nerves [1]. In computational simulation, various bone material modelling strategies have been used to model cortical bone and cancellous bone of spinal vertebrae [2,3]. However, the effects of the bone material modelling strategies on the biomechanics of the thoracolumbar spine are unclear. Thus, this study aimed to investigate the biomechanics of the thoracolumbar spine with various bone modelling strategies using a patient-specific finite element modelling technique.
    Three-dimensional finite element models of the human thoracolumbar spine were developed from the… More >

  • Open Access

    PROCEEDINGS

    Fabrication and Static/Dynamic Characterisation of a Hydrogel Candidate for Artificial Human Cartilage

    Ray Rui Zhong Chong1, Yangbo Guo1,*, Andy Yew2, Kenon Chua2, Victor P.W. Shim1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011768

    Abstract Arthritis, caused by degeneration and wear of articular cartilage, affects millions of patients worldwide. It can result in chronic pain, swelling, stiffness, and significantly affect the mobility of patients. Hence, identifying a material as an artificial alternative to replace damaged cartilage is of great benefit. Hydrogel, because of its high water content and similarity with the extracellular matrix of cartilage, has been explored for potential use as artificial cartilage. In this investigation, Polyvinyl Alcohol-Polyethylene Oxide (PVA/PEG) hydrogel with similar mechanical properties to human articular cartilage (e.g. compressive modulus, stress-strain response) was fabricated using a freeze-thaw… More >

  • Open Access

    PROCEEDINGS

    User-Interactive Printed Capacitive Smart Structure Manufacturing, Properties, and Applications

    Xiaoying Qi1,*, Shibo Liu1, Chu Long Tham1, Wei Fan1, Ruige Wu1, Hang Li Seet1, Sharon Mui Ling Nai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011648

    Abstract Printing simple and smart structures that respond to external stimuli has attracted tremendous attention and research efforts [1]. However, the widespread and rapid adoption of smart structures in applications heavily relies on the development of advanced manufacturing technologies that build upon existing industrial capabilities, with essential modifications in design, equipment, process, and material etc., while having little effect on conventional manufacturing flow. In this talk, we will discuss capacitive smart structures that possess 2 dimensional (2D), 3D, as well as 4D features and functionalities, and are fabricated via conventional manufacturing methods. (1) First of all, the… More >

  • Open Access

    PROCEEDINGS

    Numerical Simulation of In Situ Deformation Behavior of Pt-DNA Hydrogel

    Isamu Riku1,*, Arisa Fukatsu1, Koji Mimura1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011356

    Abstract Pt-DNA hydrogel is formed by cross-linking the DNA strands with Pt-ions and the resultant three-dimensionally cross-linked DNA strands’ network is expected be used as a biocompatible polymeric carrier, i.e. the drug delivery platform for in situ tissue repair due to its high toughness. On the other hand, as another essential qualification for the drug delivery platform, the stability of the microstructure of the platform is indispensable.
    To evaluate the stability of the microstructure of Pt-DNA hydrogel, in this study, we at first employ the nonaffine molecular chains’ network model to reproduce the experimental results of the More >

  • Open Access

    PROCEEDINGS

    Triply Periodic Minimal Surface and Constant Mean Curvature Surfaces Formed Rib Structure’s Energy Absorption

    Quanqing Tao1,*, Qingping Ma1, Xu Song1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011311

    Abstract This paper explores the design and fabrication of ultralight, rib-strengthened mechanical metamaterials, specifically focusing on thin-walled lattice structure and rib-formed lattice structure in micro 3D printing. The lattice structures, based on triply periodic minimal surfaces (TPMS) and constant mean curvature surfaces (CMCS), provide large surface areas and continuous internal channels with lightweight and multifunctional structural applications. Algorithm designed in this paper incorporates a dynamics relaxation solver to generate pure TPMS and ribbed CMCS, enhancing the lattice design of metamaterials and the use of parametric modeling facilitates the creation of metamaterial lattice models. The paper delves… More >

  • Open Access

    PROCEEDINGS

    Impact Response of Hybrid Laminates Made with GFRP, TPU and Rubber

    Muhd Azimin bin Ab Ghani1, Zhongwei Guan2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011074

    Abstract Thermoplastic polyurethane (TPU) offers a superior impact and perforation resistance. This paper presents a study on manufacturing a range of hybrid laminated structures made of TPU, glass fibre reinforced plastic (GFRP), styrene-butadiene rubber (SBR) and metal mesh materials, and further on investigating the structural response of the TPU based composite sandwich laminated structures. These laminated structures were tested under quasi-static perforation and low velocity impact loading to determine their structural responses and energy absorption characteristics. It has been shown that three-layer and five-layer laminates with lay-ups of GFRP-TPU-GFRP or TPU-GFRP-TPU and GFRP-TPU-GFRP-TPU-GFRP or TPU-GFRP-TPU-GFRP-TPU subjected… More >

Displaying 81-90 on page 9 of 19227. Per Page