Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access


    Model Predictive Control Coupled with Artificial Intelligence for Eddy Current Dynamometers

    İhsan Uluocak1,*, Hakan Yavuz2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 221-234, 2023, DOI:10.32604/csse.2023.025426

    Abstract The recent studies on Artificial Intelligence (AI) accompanied by enhanced computing capabilities supports increasing attention into traditional control methods coupled with AI learning methods in an attempt to bringing adaptiveness and fast responding features. The Model Predictive Control (MPC) technique is a widely used, safe and reliable control method based on constraints. On the other hand, the Eddy Current dynamometers are highly nonlinear braking systems whose performance parameters are related to many processes related variables. This study is based on an adaptive model predictive control that utilizes selected AI methods. The presented approach presents an updated the mathematical model of… More >

  • Open Access


    Artificial Intelligence Based PID Controller for an Eddy Current Dynamometer

    İhsan Uluocak1,*, Hakan Yavuz2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1229-1243, 2022, DOI:10.32604/iasc.2022.023835

    Abstract This paper presents a design and real-time application of an efficient Artificial Intelligence (AI) method assembled with PID controller of an eddy current dynamometer (ECD) for robustness due to highly nonlinear system by reason of some magnetism phenomena such as skin effect and dissipated heat of eddy currents. PID Control which is known as the most popular conventional control method in industry is inadequate for such nonlinear systems. On the other hand, Adaptive Neural Fuzzy Interference System (ANFIS), Single Hidden Layer Neural Network (SHLNN), General Regression Neural Network (GRNN), and Radial Basis Neural Network (RBNN) are examples used as artificial… More >

  • Open Access


    Characteristic and Thermal Analysis of Permanent Magnet Eddy Current Brake

    Jiahao Li, Guolai Yang*, Quanzhao Sun

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 1011-1031, 2021, DOI:10.32604/cmes.2021.013982

    Abstract In this paper, the subdomain analysis model of the eddy current brake (ECB) is established. By comparing with the finite element method, the accuracies of the subdomain model and the finite element model are verified. Furthermore, the resistance characteristics of radial, axial, and Halbach arrays under impact load are calculated and compared. The axial array has a large braking force coefficient but low critical velocity. The radial array has a low braking force coefficient but high critical velocity. The Halbach array has the advantages of the first two arrays. Not only the braking force coefficient is large, but also the… More >

  • Open Access


    An Investigation into the Influence of the Airflow Path on the Convective Heat Transfer for an Eddy Current Retarder Turntable

    Yunfei Liao1,*, Jin Liu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.5, pp. 961-977, 2020, DOI:10.32604/fdmp.2020.09163

    Abstract In order to improve the convective heat transfer relating to an eddy current retarder, the finite element model has been used to assess the performances of different possible designs. In particular, assuming the steady running state of retarder as the working condition, flow and temperature fields have been obtained for the rotor. The influence of airflow path on heat dissipation has been analysed, and the influence of the temperature field distribution on the performance of retarder has been discussed accordingly. The results show that when the steady running state of the turntable is considered, the maximum temperature is lower, the… More >

  • Open Access


    Eddy Current Analyses by Domain Decomposition Method Using Double-Double Precision

    Mizuma Takehito1,*, Takei Amane1

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.3, pp. 349-363, 2018, DOI: 10.31614/cmes.2018.01714

    Abstract A matrix equation solved in an eddy current analysis, A-ϕ method based on a domain decomposition method becomes a complex symmetric system. In general, iterative method is used as the solver. Convergence of iterative method in an interface problem is improved by increasing an accuracy of a solution of an iterative method of a subdomain problem. However, it is difficult to improve the convergence by using a small convergence criterion in the subdomain problem. Therefore, authors propose a method to introduce double-double precision into the interface problem and the subdomain problem. This proposed method improves the convergence of the interface… More >

  • Open Access


    Voxel-based Analysis of Electrostatic Fields in Virtual-human Model Duke using Indirect Boundary Element Method with Fast Multipole Method

    S. Hamada1

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.5, pp. 407-424, 2014, DOI:10.3970/cmes.2014.102.407

    Abstract The voxel-based indirect boundary element method (IBEM) combined with the Laplace-kernel fast multipole method (FMM) is capable of analyzing relatively large-scale problems. A typical application of the IBEM is the electric field analysis in virtual-human models such as the model called Duke provided by the foundation for research on information technologies in society (IT’IS Foundation). An important property of voxel-version Duke models is that they have various voxel sizes but the same structural feature. This property is useful for examining the O(N) and O(D2) dependencies of the calculation times and the amount of memory required by the FMM-IBEM, where NMore >

Displaying 1-10 on page 1 of 6. Per Page  

Share Link