Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Fast Small-Sample Modeling Method for Precision Inertial Systems Fault Prediction and Quantitative Anomaly Measurement

    Hongqiao Wang1,*, Yanning Cai2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 187-203, 2022, DOI:10.32604/cmes.2022.018000

    Abstract Inertial system platforms are a kind of important precision devices, which have the characteristics of difficult acquisition for state data and small sample scale. Focusing on the model optimization for data-driven fault state prediction and quantitative degree measurement, a fast small-sample supersphere one-class SVM modeling method using support vectors pre-selection is systematically studied in this paper. By theorem-proving the irrelevance between the model's learning result and the non-support vectors (NSVs), the distribution characters of the support vectors are analyzed. On this basis, a modeling method with selected samples having specific geometry character from the training sets is also proposed. The… More >

  • Open Access

    ARTICLE

    Mining Software Repository for Cleaning Bugs Using Data Mining Technique

    Nasir Mahmood1, Yaser Hafeez1, Khalid Iqbal2, Shariq Hussain3, Muhammad Aqib1, Muhammad Jamal4, Oh-Young Song5,*

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 873-893, 2021, DOI:10.32604/cmc.2021.016614

    Abstract Despite advances in technological complexity and efforts, software repository maintenance requires reusing the data to reduce the effort and complexity. However, increasing ambiguity, irrelevance, and bugs while extracting similar data during software development generate a large amount of data from those data that reside in repositories. Thus, there is a need for a repository mining technique for relevant and bug-free data prediction. This paper proposes a fault prediction approach using a data-mining technique to find good predictors for high-quality software. To predict errors in mining data, the Apriori algorithm was used to discover association rules by fixing confidence at more… More >

Displaying 1-10 on page 1 of 2. Per Page  

Share Link