Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (568)
  • Open Access


    Fuel Cell Performance Augmentation: Gas Flow Channel Design for Fuel Optimization

    A. B. Mahmud Hasan1,2, S.M. Guo1, M.A. Wahab1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 399-410, 2009, DOI:10.3970/fdmp.2009.005.399

    Abstract The effects of gas flow channel design were studied experimentally for increasing fuel cell performance and fuel optimization. Three types of gas flow channels (serpentine, straight and interdigitated) were designed on the basis of water flooding due to electrochemical reactions, electro-osmotic drag, etc. Experimental results indicate that the best cell performance can be obtained by arranging interdigitated gas flow channel at the anode side and serpentine gas flow channel at the cathode side. Detailed analysis on complex two phase water generation and electrochemical phenomena behind those results were analyzed in this work to find out More >

  • Open Access


    Numerical and Experimental Study of Forced Mixing with Static Magnetic Field on SiGe System

    N. Armour1, S. Dost1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 331-344, 2009, DOI:10.3970/fdmp.2009.005.331

    Abstract A combined numerical and experimental investigation has been undertaken to explore the benefits of an applied static magnetic field on Silicon transport into a Germanium melt. This work utilized a similar material configuration to that used in the Liquid Phase Diffusion (LPD) and Melt-Replenishment Czochralski (Cz) growth systems. The measured concentration profiles from the samples processed with and without the application of magnetic field showed very similar shape. The amount of silicon transport into the melt is slightly higher in the samples processed under magnetic field, and there is a substantial difference in dissolution interface… More >

  • Open Access


    On the Behavior of an Interface under Molecular Diffusion: A Theoretical Prediction and Experimental Study

    R. Abdeljabar1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 193-210, 2009, DOI:10.3970/fdmp.2009.005.193

    Abstract A theoretical model has been developed to predict the expansion of a salty gradient (i.e. the interface) layer under natural diffusion. The salty gradient layer is initially sandwiched between two homogeneous miscible layers of varying salinity, which may or may not have the same thickness. The model describes the concentration profile of the salty gradient layer (expressed by analytical solutions of the diffusion equation) as the boundaries of this interfacial layer move into the adjacent (hitherto homogeneous) regions. The lifetime of the adjacent layers is also predicted. An experimental study for a configuration with salty More >

  • Open Access


    Application of a Diffusion Model to Predict Drying Kinetics Changes Under Variable Conditions: Experimental and Simulation Study

    L. Bennamoun1, A. Belhamri2, A. Ali Mohamed

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 177-192, 2009, DOI:10.3970/fdmp.2009.005.177

    Abstract This study focuses on the interplay between drying kinetics (encountered in typical industrial processes and particularly in the context of solar drying) and the possible variation of external (e.g., environmental) conditions. Theoretical models of these behaviours are introduced. Experimental results confirmed by simulation are also presented. Variation of the thermo physical properties of air is taken into account in terms of variation of viscosity, density and coefficient of diffusion. In particular, this coefficient is calculated from experimental data and expressed as a function of the wet bulb air temperature. When external conditions are modified and,… More >

  • Open Access


    Detailed Observations of Convective Instability on an Interfacial Salty Layer

    R. Abdeljabar1, F. Onofri2, M.J. Safi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.4, pp. 245-254, 2008, DOI:10.3970/fdmp.2008.004.245

    Abstract This paper focuses on the mechanisms of convective instability in a stable salty gradient layer (i.e. an interfacial salty layer). This layer is assumed to be initially confined between two homogeneous liquid layers: a lower layer composed of salty water of 5wt% concentration and an upper layer composed of distilled water. The mechanisms underlying the interfacial salty layer's instability are depicted experimentally using a PIV technique and via measurements of concentration and temperature. It is found that in addition to the effect of double-diffusion across the interfacial salty layer, different forms of Kelvin-Helmholtz instability occur… More >

  • Open Access


    Permeability and Thermodiffusion Effect in a Porous Cavity Filled with Hydrocarbon Fluid Mixtures

    T. J Jaber1, M. Khawaja1, M.Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.4, pp. 271-286, 2006, DOI:10.3970/fdmp.2006.002.271

    Abstract This paper numerically investigates the interaction between thermodiffuion and buoyancy driven convection in a laterally heated vertical porous cavity for different permeability. The Firoozabadi model is applied to binary hydrocarbon mixtures: (i) the mixture of 1,2,3,4 tetrahydronaphtalene (THN) and dodecane (C12) with mass fraction of 50% for each component, (ii) 1,2,3,4 tetrahydronaphtalene and isobutylbenzene (IBB) with mass fraction of 50% for each component, and (iii) isobutylbenzene and dodecane with mass fraction of 50% for each component. The thermal and molecular diffusion coefficients, which are functions of the temperature and other properties of mixture, are calculated More >

  • Open Access


    Numerical Simulation of Liquid Phase Diffusion Growth of SiGe Single Crystals under Zero Gravity

    M. Sekhon1, N. Armour1, S. Dost1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 331-351, 2013, DOI:10.3970/fdmp.2013.009.331

    Abstract Liquid Phase Diffusion (LPD) growth of SixGe1-x single crystals has been numerically simulated under zero gravity. The objective was to examine growth rate and silicon concentration distribution in the LPD grown crystals under diffusion dominated mass transport prior to the planned LPD space experiments on the International Space Station (ISS). Since we are interested in predicting growth rate and crystal composition, the gravitational fluctuation of the ISS (g-jitter) was neglected and the gravity level was taken as zero for simplicity.
    A fixed grid approach has been utilized for the simulation. An integrated top-level solver was developed… More >

  • Open Access


    Effects of the Velocity and the Nature of the Inert Gas on the Stainless Steel Laser Cut Quality

    S. Aggoune1, E.H. Amara1, M. Debiane2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.1, pp. 61-75, 2013, DOI:10.3970/fdmp.2013.009.061

    Abstract The effects of inert assisting gas nature and velocity on laser cut quality are investigated. A pure fusion cutting process just above melting point is considered, where the molten steel velocity is given as a function of the two acting forces represented by the pressure gradient and the frictional forces applied by the laminar gas flow. In the case of nitrogen assisting gas, the stainless steel melt film exhibits a visible separation point. The point where the melt flow is separated out from the solid wall depends strongly on the gas velocity. It is pushed… More >

  • Open Access


    Quasi Steady State Effect of Micro Vibration from Two Space Vehicles on Mixture During Thermodiffusion Experiment

    A.H. Ahadi1, M.Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 397-422, 2012, DOI:10.3970/fdmp.2012.008.397

    Abstract The numerical simulations of a thermodiffusion experiment in atmospheric pressure binary mixtures of water and isopropanol subject to micro-vibrations at reduced gravity are presented. The vibrations are induced on board ISS and FOTON-M3 due to many different reasons like crew activity, spacecraft docking or operating other experiments, etc. The effects of micro-gravity vibration were investigated in detail on all of the mixture properties. The influences of different cavity sizes as well as different signs of Soret coefficients in the solvent were considered. In this paper, the thermodiffusion experiment was subjected to two different g-jitter vibrations… More >

  • Open Access


    Thermodiffusion Applications in MEMS, NEMS and Solar Cell Fabrication by Thermal Metal Doping of Semiconductors

    Morteza Eslamian1,2, M. Ziad Saghir1,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 353-380, 2012, DOI:10.3970/fdmp.2012.008.353

    Abstract In this paper recent advances pertinent to the applications of thermodiffusion or thermomigration in the fabrication of micro and nano metal-doped semiconductor-based patterns and devices are reviewed and discussed. In thermomigration, a spot, line, or layer of a p-type dopant, such as aluminum, which is deposited on a semiconductor surface, penetrates into the semiconductor body due to the presence of a temperature gradient applied across the wafer body. The trails of p-doped regions within an n-type semiconductor, in the form of columns or walls, may be used for several applications, such as the isolation of More >

Displaying 541-550 on page 55 of 568. Per Page