Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (95)
  • Open Access

    ARTICLE

    Quantum Generative Adversarial Network: A Survey

    Tong Li1, Shibin Zhang1, *, Jinyue Xia2

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 401-438, 2020, DOI:10.32604/cmc.2020.010551 - 20 May 2020

    Abstract Generative adversarial network (GAN) is one of the most promising methods for unsupervised learning in recent years. GAN works via adversarial training concept and has shown excellent performance in the fields image synthesis, image super-resolution, video generation, image translation, etc. Compared with classical algorithms, quantum algorithms have their unique advantages in dealing with complex tasks, quantum machine learning (QML) is one of the most promising quantum algorithms with the rapid development of quantum technology. Specifically, Quantum generative adversarial network (QGAN) has shown the potential exponential quantum speedups in terms of performance. Meanwhile, QGAN also exhibits More >

  • Open Access

    ARTICLE

    Few-Shot Learning with Generative Adversarial Networks Based on WOA13 Data

    Xin Li1,2, Yanchun Liang1,2, Minghao Zhao1,2, Chong Wang1,2,3, Yu Jiang1,2,*

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 1073-1085, 2019, DOI:10.32604/cmc.2019.05929

    Abstract In recent years, extreme weather events accompanying the global warming have occurred frequently, which brought significant impact on national economic and social development. The ocean is an important member of the climate system and plays an important role in the occurrence of climate anomalies. With continuous improvement of sensor technology, we use sensors to acquire the ocean data for the study on resource detection and disaster prevention, etc. However, the data acquired by the sensor is not enough to be used directly by researchers, so we use the Generative Adversarial Network (GAN) to enhance the… More >

  • Open Access

    ARTICLE

    Embedding Image Through Generated Intermediate Medium Using Deep Convolutional Generative Adversarial Network

    Chuanlong Li1,2,*, Yumeng Jiang3, Marta Cheslyar1

    CMC-Computers, Materials & Continua, Vol.56, No.2, pp. 313-324, 2018, DOI:10.3970/cmc.2018.03950

    Abstract Deep neural network has proven to be very effective in computer vision fields. Deep convolutional network can learn the most suitable features of certain images without specific measure functions and outperform lots of traditional image processing methods. Generative adversarial network (GAN) is becoming one of the highlights among these deep neural networks. GAN is capable of generating realistic images which are imperceptible to the human vision system so that the generated images can be directly used as intermediate medium for many tasks. One promising application of using GAN generated images would be image concealing which… More >

  • Open Access

    ARTICLE

    Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modulation Classification

    Ya Tu1, Yun Lin1, Jin Wang2,3,*, Jeong-Uk Kim4

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 243-254, 2018, DOI:10.3970/cmc.2018.01755

    Abstract Deep Learning (DL) is such a powerful tool that we have seen tremendous success in areas such as Computer Vision, Speech Recognition, and Natural Language Pro-cessing. Since Automated Modulation Classification (AMC) is an important part in Cognitive Radio Networks, we try to explore its potential in solving signal modula-tion recognition problem. It cannot be overlooked that DL model is a complex mod-el, thus making them prone to over-fitting. DL model requires many training data to combat with over-fitting, but adding high quality labels to training data manually is not always cheap and accessible, especially in More >

  • Open Access

    ARTICLE

    Adversarial Learning for Distant Supervised Relation Extraction

    Daojian Zeng1,3, Yuan Dai1,3, Feng Li1,3, R. Simon Sherratt2, Jin Wang3,*

    CMC-Computers, Materials & Continua, Vol.55, No.1, pp. 121-136, 2018, DOI:10.3970/cmc.2018.055.121

    Abstract Recently, many researchers have concentrated on using neural networks to learn features for Distant Supervised Relation Extraction (DSRE). These approaches generally use a softmax classifier with cross-entropy loss, which inevitably brings the noise of artificial class NA into classification process. To address the shortcoming, the classifier with ranking loss is employed to DSRE. Uniformly randomly selecting a relation or heuristically selecting the highest score among all incorrect relations are two common methods for generating a negative class in the ranking loss function. However, the majority of the generated negative class can be easily discriminated from… More >

Displaying 91-100 on page 10 of 95. Per Page