Sanjay P. Pande1, Sarika Khandelwal2, Ganesh K. Yenurkar3,*, Rakhi D. Wajgi3, Vincent O. Nyangaresi4,5,*, Pratik R. Hajare6, Poonam T. Agarkar7
CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5937-5975, 2025, DOI:10.32604/cmc.2025.064505
- 30 July 2025
Abstract Recognizing road scene context from a single image remains a critical challenge for intelligent autonomous driving systems, particularly in dynamic and unstructured environments. While recent advancements in deep learning have significantly enhanced road scene classification, simultaneously achieving high accuracy, computational efficiency, and adaptability across diverse conditions continues to be difficult. To address these challenges, this study proposes HybridLSTM, a novel and efficient framework that integrates deep learning-based, object-based, and handcrafted feature extraction methods within a unified architecture. HybridLSTM is designed to classify four distinct road scene categories—crosswalk (CW), highway (HW), overpass/tunnel (OP/T), and parking (P)—by… More >