Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (782)
  • Open Access

    ARTICLE

    Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM

    Lin Ma1, Liyong Wang1, Shuang Zeng1, Yutong Zhao1, Chang Liu1, Heng Zhang1, Qiong Wu2,*, Hongbo Ren2

    Energy Engineering, Vol.121, No.6, pp. 1473-1493, 2024, DOI:10.32604/ee.2024.047332 - 21 May 2024

    Abstract Accurate load forecasting forms a crucial foundation for implementing household demand response plans and optimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations, a single prediction model is hard to capture temporal features effectively, resulting in diminished prediction accuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neural network (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), is proposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features from the original data, enhancing the quality of data… More >

  • Open Access

    ARTICLE

    Hybrid Strategy of Partitioned and Monolithic Methods for Solving Strongly Coupled Analysis of Inverse and Direct Piezoelectric and Circuit Coupling

    Daisuke Ishihara*, Syunnosuke Nozaki, Tomoya Niho, Naoto Takayama

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1371-1386, 2024, DOI:10.32604/cmes.2024.049694 - 20 May 2024

    Abstract The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters. Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations. Each formulation has its advantages and disadvantages, and the choice depends on the characteristics of each coupled problem. This study proposes a new option: a coupled analysis strategy that combines the best features of the existing formulations, namely, the hybrid partitioned-monolithic method. The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric More >

  • Open Access

    ARTICLE

    A Hybrid Approach for Predicting the Remaining Useful Life of Bearings Based on the RReliefF Algorithm and Extreme Learning Machine

    Sen-Hui Wang1,2,*, Xi Kang1, Cheng Wang1, Tian-Bing Ma1, Xiang He2, Ke Yang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1405-1427, 2024, DOI:10.32604/cmes.2024.049281 - 20 May 2024

    Abstract Accurately predicting the remaining useful life (RUL) of bearings in mining rotating equipment is vital for mining enterprises. This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features. This study proposes a hybrid predictive model to assess the RUL of rolling element bearings. The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features. The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm. Subsequently,… More >

  • Open Access

    ARTICLE

    Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism

    Jing-Doo Wang1, Chayadi Oktomy Noto Susanto1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1711-1728, 2024, DOI:10.32604/cmes.2024.048955 - 20 May 2024

    Abstract A significant obstacle in intelligent transportation systems (ITS) is the capacity to predict traffic flow. Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately. However, accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors. This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory (Conv-BiLSTM) with attention mechanisms. Prior studies neglected to include data pertaining to factors such as holidays, weather conditions, and More >

  • Open Access

    ARTICLE

    An Enhanced Hybrid Model Based on CNN and BiLSTM for Identifying Individuals via Handwriting Analysis

    Md. Abdur Rahim1, Fahmid Al Farid2, Abu Saleh Musa Miah3, Arpa Kar Puza1, Md. Nur Alam4, Md. Najmul Hossain5, Sarina Mansor2, Hezerul Abdul Karim2,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1689-1710, 2024, DOI:10.32604/cmes.2024.048714 - 20 May 2024

    Abstract Handwriting is a unique and significant human feature that distinguishes them from one another. There are many researchers have endeavored to develop writing recognition systems utilizing specific signatures or symbols for person identification through verification. However, such systems are susceptible to forgery, posing security risks. In response to these challenges, we propose an innovative hybrid technique for individual identification based on independent handwriting, eliminating the reliance on specific signatures or symbols. In response to these challenges, we propose an innovative hybrid technique for individual identification based on independent handwriting, eliminating the reliance on specific signatures… More >

  • Open Access

    ARTICLE

    Advanced Machine Learning Methods for Prediction of Blast-Induced Flyrock Using Hybrid SVR Methods

    Ji Zhou1,2, Yijun Lu3, Qiong Tian1,2, Haichuan Liu3, Mahdi Hasanipanah4,5,*, Jiandong Huang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1595-1617, 2024, DOI:10.32604/cmes.2024.048398 - 20 May 2024

    Abstract Blasting in surface mines aims to fragment rock masses to a proper size. However, flyrock is an undesirable effect of blasting that can result in human injuries. In this study, support vector regression (SVR) is combined with four algorithms: gravitational search algorithm (GSA), biogeography-based optimization (BBO), ant colony optimization (ACO), and whale optimization algorithm (WOA) for predicting flyrock in two surface mines in Iran. Additionally, three other methods, including artificial neural network (ANN), kernel extreme learning machine (KELM), and general regression neural network (GRNN), are employed, and their performances are compared to those of four More >

  • Open Access

    ARTICLE

    Numerical Treatments for Crossover Cancer Model of Hybrid Variable-Order Fractional Derivatives

    Nasser Sweilam1, Seham Al-Mekhlafi2,*, Aya Ahmed3, Ahoud Alsheri4, Emad Abo-Eldahab3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1619-1645, 2024, DOI:10.32604/cmes.2024.047896 - 20 May 2024

    Abstract In this paper, two crossover hybrid variable-order derivatives of the cancer model are developed. Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators. The existence, uniqueness, and stability of the proposed model are discussed. Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models. Comparative studies with generalized fifth-order Runge-Kutta method are given. Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented. We have showcased the efficiency of the proposed More >

  • Open Access

    REVIEW

    A Review of Hybrid Cyber Threats Modelling and Detection Using Artificial Intelligence in IIoT

    Yifan Liu1, Shancang Li1,*, Xinheng Wang2, Li Xu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1233-1261, 2024, DOI:10.32604/cmes.2024.046473 - 20 May 2024

    Abstract The Industrial Internet of Things (IIoT) has brought numerous benefits, such as improved efficiency, smart analytics, and increased automation. However, it also exposes connected devices, users, applications, and data generated to cyber security threats that need to be addressed. This work investigates hybrid cyber threats (HCTs), which are now working on an entirely new level with the increasingly adopted IIoT. This work focuses on emerging methods to model, detect, and defend against hybrid cyber attacks using machine learning (ML) techniques. Specifically, a novel ML-based HCT modelling and analysis framework was proposed, in which regularisation and Random Forest were More >

  • Open Access

    ARTICLE

    A Hybrid Machine Learning Framework for Security Intrusion Detection

    Fatimah Mudhhi Alanazi*, Bothina Abdelmeneem Elsobky, Shaimaa Aly Elmorsy

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 835-851, 2024, DOI:10.32604/csse.2024.042401 - 20 May 2024

    Abstract Proliferation of technology, coupled with networking growth, has catapulted cybersecurity to the forefront of modern security concerns. In this landscape, the precise detection of cyberattacks and anomalies within networks is crucial, necessitating the development of efficient intrusion detection systems (IDS). This article introduces a framework utilizing the fusion of fuzzy sets with support vector machines (SVM), named FSVM. The core strategy of FSVM lies in calculating the significance of network features to determine their relative importance. Features with minimal significance are prudently disregarded, a method akin to feature selection. This process not only curtails the… More >

  • Open Access

    ARTICLE

    Optimizing Two-Phase Flow Heat Transfer: DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers

    Ming Yan1, Caijiang Lu2,*, Pan Shi1,*, Meiling Zhang3, Jiawei Zhang1, Liang Wang1

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 615-631, 2024, DOI:10.32604/fhmt.2024.048333 - 20 May 2024

    Abstract In response to escalating challenges in energy conservation and emission reduction, this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers. Utilizing a fusion of hybrid modeling and automation technologies, we develop soft measurement models for key combustion parameters, such as the net calorific value of coal, flue gas oxygen content, and fly ash carbon content, within the Distributed Control System (DCS). Validated with performance test data, these models exhibit controlled root mean square error (RMSE) and maximum absolute error (MAXE) values, both within the… More > Graphic Abstract

    Optimizing Two-Phase Flow Heat Transfer: DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers

Displaying 61-70 on page 7 of 782. Per Page