Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access


    Hybrid Deep Learning Based Attack Detection for Imbalanced Data Classification

    Rasha Almarshdi1,2,*, Laila Nassef1, Etimad Fadel1, Nahed Alowidi1

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 297-320, 2023, DOI:10.32604/iasc.2023.026799

    Abstract Internet of Things (IoT) is the most widespread and fastest growing technology today. Due to the increasing of IoT devices connected to the Internet, the IoT is the most technology under security attacks. The IoT devices are not designed with security because they are resource constrained devices. Therefore, having an accurate IoT security system to detect security attacks is challenging. Intrusion Detection Systems (IDSs) using machine learning and deep learning techniques can detect security attacks accurately. This paper develops an IDS architecture based on Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) deep learning algorithms. We implement our model… More >

  • Open Access


    Hybrid Deep Learning Enabled Intrusion Detection in Clustered IIoT Environment

    Radwa Marzouk1, Fadwa Alrowais2, Noha Negm3, Mimouna Abdullah Alkhonaini4, Manar Ahmed Hamza5,*, Mohammed Rizwanullah5, Ishfaq Yaseen5, Abdelwahed Motwakel5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3763-3775, 2022, DOI:10.32604/cmc.2022.027483

    Abstract Industrial Internet of Things (IIoT) is an emerging field which connects digital equipment as well as services to physical systems. Intrusion detection systems (IDS) can be designed to protect the system from intrusions or attacks. In this view, this paper presents a novel hybrid deep learning with metaheuristics enabled intrusion detection (HDL-MEID) technique for clustered IIoT environments. The HDL-MEID model mainly intends to organize the IIoT devices into clusters and enabled secure communication. Primarily, the HDL-MEID technique designs a new chaotic mayfly optimization (CMFO) based clustering approach for the effective choice of the Cluster Heads (CH) and organize clusters. Moreover,… More >

  • Open Access


    Hybrid Deep Learning Enabled Air Pollution Monitoring in ITS Environment

    Ashit Kumar Dutta1, Jenyfal Sampson2, Sultan Ahmad3, T. Avudaiappan4, Kanagaraj Narayanasamy5,*, Irina V. Pustokhina6, Denis A. Pustokhin7

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1157-1172, 2022, DOI:10.32604/cmc.2022.024109

    Abstract Intelligent Transportation Systems (ITS) have become a vital part in improving human lives and modern economy. It aims at enhancing road safety and environmental quality. There is a tremendous increase observed in the number of vehicles in recent years, owing to increasing population. Each vehicle has its own individual emission rate; however, the issue arises when the emission rate crosses a standard value. Owing to the technological advances made in Artificial Intelligence (AI) techniques, it is easy to leverage it to develop prediction approaches so as to monitor and control air pollution. The current research paper presents Oppositional Shark Shell… More >

  • Open Access


    Facial Action Coding and Hybrid Deep Learning Architectures for Autism Detection

    A. Saranya1,*, R. Anandan2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1167-1182, 2022, DOI:10.32604/iasc.2022.023445

    Abstract Hereditary Autism Spectrum Disorder (ASD) is a neuron disorder that affects a person's ability for communication, interaction, and also behaviors. Diagnostics of autism are available throughout all stages of life, from infancy through adolescence and adulthood. Facial Emotions detection is considered to be the most parameter for the detection of Autismdisorders among the different categories of people. Propelled with a machine and deep learning algorithms, detection of autism disorder using facial emotions has reached a new dimension and has even been considered as the precautionary warning system for caregivers. Since Facial emotions are limited to only seven expressions, detection of… More >

  • Open Access


    A Novel Hybrid Deep Learning Framework for Intrusion Detection Systems in WSN-IoT Networks

    M. Maheswari1,2,*, R. A. Karthika1

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 365-382, 2022, DOI:10.32604/iasc.2022.022259

    Abstract With the advent of wireless communication and digital technology, low power, Internet-enabled, and reconfigurable wireless devices have been developed, which revolutionized day-to-day human life and the economy across the globe. These devices are realized by leveraging the features of sensing, processing the data and nodes communications. The scale of Internet-enabled wireless devices has increased daily, and these devices are exposed to various cyber-attacks. Since the complexity and dynamics of the attacks on the devices are computationally high, intelligent, scalable and high-speed intrusion detection systems (IDS) are required. Moreover, the wireless devices are battery-driven; implementing them would consume more energy, weakening… More >

  • Open Access


    Hybrid Deep Learning Framework for Privacy Preservation in Geo-Distributed Data Centre

    S. Nithyanantham1,*, G. Singaravel2

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1905-1919, 2022, DOI:10.32604/iasc.2022.022499

    Abstract In recent times, a huge amount of data is being created from different sources and the size of the data generated on the Internet has already surpassed two Exabytes. Big Data processing and analysis can be employed in many disciplines which can aid the decision-making process with privacy preservation of users’ private data. To store large quantity of data, Geo-Distributed Data Centres (GDDC) are developed. In recent times, several applications comprising data analytics and machine learning have been designed for GDDC. In this view, this paper presents a hybrid deep learning framework for privacy preservation in distributed DCs. The proposed… More >

  • Open Access


    Heart Disease Classification Using Multiple K-PCA and Hybrid Deep Learning Approach

    S. Kusuma*, Dr. Jothi K. R

    Computer Systems Science and Engineering, Vol.41, No.3, pp. 1273-1289, 2022, DOI:10.32604/csse.2022.021741

    Abstract One of the severe health problems and the most common types of heart disease (HD) is Coronary heart disease (CHD). Due to the lack of a healthy lifestyle, HD would cause frequent mortality worldwide. If the heart attack occurs without any symptoms, it cannot be cured by an intelligent detection system. An effective diagnosis and detection of CHD should prevent human casualties. Moreover, intelligent systems employ clinical-based decision support approaches to assist physicians in providing another option for diagnosing and detecting HD. This paper aims to introduce a heart disease prediction model including phases like (i) Feature extraction, (ii) Feature… More >

  • Open Access


    A Hybrid Deep Learning Scheme for Multi-Channel Sleep Stage Classification

    Wei Pei1, Yan Li1, Siuly Siuly1,*, Peng Wen2

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 889-905, 2022, DOI:10.32604/cmc.2022.021830

    Abstract Sleep stage classification plays a significant role in the accurate diagnosis and treatment of sleep-related diseases. This study aims to develop an efficient deep learning based scheme for correctly identifying sleep stages using multi-biological signals such as electroencephalography (EEG), electrocardiogram (ECG), electromyogram (EMG), and electrooculogram (EOG). Most of the prior studies in sleep stage classification focus on hand-crafted feature extraction methods. Traditional hand-crafted feature extraction methods choose features manually from raw data, which is tedious, and these features are limited in their ability to balance efficiency and accuracy. Moreover, most of the existing works on sleep staging are either single… More >

  • Open Access


    A Hybrid Deep Learning-Based Unsupervised Anomaly Detection in High Dimensional Data

    Amgad Muneer1,2,*, Shakirah Mohd Taib1,2, Suliman Mohamed Fati3, Abdullateef O. Balogun1, Izzatdin Abdul Aziz1,2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5363-5381, 2022, DOI:10.32604/cmc.2022.021113

    Abstract Anomaly detection in high dimensional data is a critical research issue with serious implication in the real-world problems. Many issues in this field still unsolved, so several modern anomaly detection methods struggle to maintain adequate accuracy due to the highly descriptive nature of big data. Such a phenomenon is referred to as the “curse of dimensionality” that affects traditional techniques in terms of both accuracy and performance. Thus, this research proposed a hybrid model based on Deep Autoencoder Neural Network (DANN) with five layers to reduce the difference between the input and output. The proposed model was applied to a… More >

  • Open Access


    DeepIoT.IDS: Hybrid Deep Learning for Enhancing IoT Network Intrusion Detection

    Ziadoon K. Maseer1, Robiah Yusof1, Salama A. Mostafa2,*, Nazrulazhar Bahaman1, Omar Musa3, Bander Ali Saleh Al-rimy4

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3945-3966, 2021, DOI:10.32604/cmc.2021.016074

    Abstract With an increasing number of services connected to the internet, including cloud computing and Internet of Things (IoT) systems, the prevention of cyberattacks has become more challenging due to the high dimensionality of the network traffic data and access points. Recently, researchers have suggested deep learning (DL) algorithms to define intrusion features through training empirical data and learning anomaly patterns of attacks. However, due to the high dynamics and imbalanced nature of the data, the existing DL classifiers are not completely effective at distinguishing between abnormal and normal behavior line connections for modern networks. Therefore, it is important to design… More >

Displaying 21-30 on page 3 of 37. Per Page