Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8,358)
  • Open Access

    ARTICLE

    Impact Force Identification of CFRP Structures Using Experimental Transfer Matrices

    S. Atobe1, H. Fukunaga1, N. Hu2

    CMC-Computers, Materials & Continua, Vol.26, No.1, pp. 67-90, 2011, DOI:10.3970/cmc.2011.026.067

    Abstract This paper presents a method for identifying the location and force history of an impact force acting on CFRP structures such as laminated plates and stiffened panels. The identification method is an experimental one without using any analytical model of the structure. Here, experimental transfer matrices, which relate the impact force to the corresponding responses of PZT sensors, are used to identify the impact force. The transfer matrices are preliminarily constructed from the measured data obtained by impact tests with an impulse hammer. To identify the impact location, the arrival times of the flexural waves More >

  • Open Access

    ABSTRACT

    Implement and validation of Viscous Numerical Wave Flume Based on Finite Element Method and CLEAR-VOF Method

    Lin LU, Bin TENG, Bing CHEN

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 133-134, 2011, DOI:10.3970/icces.2011.019.133

    Abstract This work describes the numerical implements of a two-dimensional viscous numerical wave flume, which is based on the Finite Element Method (FEM), Computational lagrangian-Eulerian Advection Remap Volume of Fluid Method (CLEAR-VOF), internal wave generation and artificial wave damping technique. Owning to the inherent consistence of CLEAR-VOF with FEM, the present numerical model allows the simulations of wave propagation and interaction with structures to be simulated with irregular mesh partition. The present numerical wave flume is validated by several applications in comparisons with available experimental data and numerical results, including the problems of standing wave trains More >

  • Open Access

    ABSTRACT

    The measurement method of node density and its application

    Yufeng Nie, Yu Zhang, Yiqiang Li, Gu YT

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 123-124, 2011, DOI:10.3970/icces.2011.019.123

    Abstract When the set of nodes distributed randomly is applied to approximate function, the size of the domain support of point has a great influence on the validity and accuracy of approximation. In order to study the radius of the support domain, this paper gives a new concept of the node density firstly, which not only can characterize the density level of distribution of the node and its calculation algorithm is simple, but also is easy to determine the radius of the support domain; Secondly, based on the concept of the node density, an algorithm which More >

  • Open Access

    ABSTRACT

    Development of the coarse-grained particle method and its application to compression-wave propagation in metal

    Takahide Nakamura

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 115-116, 2011, DOI:10.3970/icces.2011.019.115

    Abstract No limitation exists virtually in target size for the classical simulation of atoms with the O(N) algorithms on parallel machines. On the other hand, the time step cannot be changed and hence the total simulation time still remains short. It is meaningful to increase the time step by the coarse-graining the atomic system. The coarse-grained particle (CGP) method has been proposed for such purposes, but it is applicable only to crystalline solids at zero-temperature limit [1,2]. The total energy of the CGP system is defined as the statistical ensemble average of the atomistic Hamiltonian under… More >

  • Open Access

    ABSTRACT

    Multi-Physics Simulation by Quantum Chemical Molecular Dynamics

    Momoji Kubo

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 127-128, 2011, DOI:10.3970/icces.2011.018.127

    Abstract The establishment of the process and material design technology based on theoretical science at electronic- and atomic-level is one of the important subjects in order to solve the energy and environmental problems, to realize the safe and secure society, and to create new industry and markets. Especially, the recent material, process, and system technologies constitute of multi-physics phenomena including chemical reaction, friction, impact, stress, fluid, photon, electron, heat, electric and magnetic fields etc., and then the deep understanding of the above multi-physics phenomena are essential. Previously, continuum simulations such as finite element method have been… More >

  • Open Access

    ABSTRACT

    Mechanical models for human tracheas based on uniaxial extension test

    xuan pei

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 123-124, 2011, DOI:10.3970/icces.2011.018.123

    Abstract The constitutive model always plays a fundamental role in biomechanical researches on human trachea soft tissues. Due to the variety of constitutive theories, the selection of the appropriate one and the determination of its material parameters becomes a question. Based on longitudinal and circumferential extension tests on human tracheas, three constitutive models-the isotropic M-R model, the Holzapfel's anisotropic model and modified Hozapfel's model respectively, were utilized in this paper to fit the experimental data. A jointly fitting strategy was also proposed to obtain the anisotropic model parameters. For the isotropic M-R model, material parameters optimized… More >

  • Open Access

    ABSTRACT

    Effects of Tangent Operators on Prediction Accuracy of Meso-mechanical Constitutive Model of Elasto-plastic Composites

    Sujuan Guo, Guozheng Kang, Juan Zhang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 121-122, 2011, DOI:10.3970/icces.2011.018.121

    Abstract With a newly developed homogenization cyclic constitutive model of particle reinforced metal matrix composites (Guo et al., 2011), the effects of tangent operators, i.e., continuum and algorithmic tangent operators [defined by Doghri and Ouaar (2003)] on the accuracy of the developed meso-mechanical constitutive model to predict the monotonic tensile and uniaxial ratchetting deformation of SiCP/6061Al composites were investigated in this work. The predicted results were obtained by the developed model with the choices of different tangent operators and various magnitudes of loading increments. Some useful accuracy comparison and error analysis on the predicted results were More >

  • Open Access

    ABSTRACT

    Application of the Gradient Smoothing Technique to the Natural Neighbour Galerkin Method for the Couple-Stress Elasticity

    K. Wang, S.J. Zhou, Z.F. Nie

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 115-116, 2011, DOI:10.3970/icces.2011.018.115

    Abstract The natural neighbour Galerkin method is tailored to solve boundary value problems of the couple-stress elasticity to model the size dependent behaviour of materials. This method is based on the displacement-based Galerkin approach, and the calculation of the global stiffness matrix is performed using gradient smoothing technique combined with the non-Sibsonian partition of unity approximation scheme. This method possesses the following properties: the complex C1-continuous approximation scheme is avoided without using either Lagrange multipliers or penalty parameters; no domain integrals involved in the assembly of the global stiffness matrix; and the imposition of essential boundary More >

  • Open Access

    ABSTRACT

    Calcium Response and Transfer in Bone Cell Network with or without Gap Junctions under Mechanical Stimulation

    Bo Huo, Man Hu, Ping Li

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 103-104, 2011, DOI:10.3970/icces.2011.018.103

    Abstract It has been widely accepted that movement of human body causes the fluid flow through pores or channels inside bone and subsequently on osteoblasts on the surface of trabeculae and osteocytes inside lacunae. The mechanism of calcium response in a bone cell and calcium transfer between bone cells is critical in understanding the communication between bone cells and calcium deposition on bone matrix. Our previous works have demonstrated that when micropatterned osteoblastic cell network with gap junctions was exposed to fluid flow, extracellular ATP diffusion following the activation of calcium response in neighboring cells plays… More >

  • Open Access

    ABSTRACT

    A Spatial FEM Model of Thermal and Mechanical Action in RCC dam

    M. S. Jaafar, J. Noorzaei, A. A. Abdulrazeg, T. A. Mohammed, P.Khanehzaei

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 97-98, 2011, DOI:10.3970/icces.2011.018.097

    Abstract Specific features of the thermal stress fields in roller compacted concrete (RCC) dam are always their spatial character and completely dependent on the maturity functions such as deformations properties (elastic, creep). The thermal changes in the material affect the elastic, creep properties of the material, and in turn, the stress fields within the structure. Therefore, the effects of temperature on the properties of RCC materials( elastic, creep) has to be taken into account in order to determine the risk of the thermally induced cracking in these dams. In this study, a viscoelastic model, including ageing More >

Displaying 7391-7400 on page 740 of 8358. Per Page