Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (367)
  • Open Access

    ARTICLE

    Performance Simulation of a Double Tube Heat Exchanger Based on Different Nanofluids by Aspen Plus

    Fawziea M. Hussien1, Atheer S. Hassoon2,*, Ghaidaa M. Ahmed1

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 175-191, 2024, DOI:10.32604/fhmt.2023.047177

    Abstract A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity. Adding nanoparticles of high thermal conductivity materials is a significant way to enhance the heat transfer fluid's thermal conductivity. This research used engine oil containing alumina (Al2O3) nanoparticles and copper oxide (CuO) to test whether or not the heat exchanger’s efficiency could be improved. To establish the most effective elements for heat transfer enhancement, the heat exchangers thermal performance was tested at 0.05% and 0.1% concentrations for Al2O3 and CuO nanoparticles. The simulation results showed that the percentage increase in Nusselt number (Nu)… More >

  • Open Access

    ARTICLE

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al2O3-Eg and TiO2-Eg Fluids on a Stretched Surface

    K. Jyothi1, Abhishek Dasore2,3,*, R. Ganapati4, Sk. Mohammad Shareef5, Ali J. Chamkha6, V. Raghavendra Prasad7

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 79-105, 2024, DOI:10.32604/fhmt.2024.046891

    Abstract In the current research, a thorough examination unfolds concerning the attributes of magnetohydrodynamic (MHD) boundary layer flow and heat transfer inherent to nanoliquids derived from Sisko Al2O3-Eg and TiO2-Eg compositions. Such nanoliquids are subjected to an extending surface. Consideration is duly given to slip boundary conditions, as well as the effects stemming from variable viscosity and variable thermal conductivity. The analytical approach applied involves the application of suitable similarity transformations. These conversions serve to transform the initial set of complex nonlinear partial differential equations into a more manageable assembly of ordinary differential equations. Through the utilization of the FEM, these… More > Graphic Abstract

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al<sub>2</sub>O<sub>3</sub>-Eg and TiO<sub>2</sub>-Eg Fluids on a Stretched Surface

  • Open Access

    ARTICLE

    CHARACTERIZATION OF THE RHEOLOGY AND CURE KINETICS OF EPOXY RESIN WITH CARBON NANOTUBES

    R. J. Johnson, R. Pitchumani

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-9, 2010, DOI:10.5098/hmt.v1.1.3007

    Abstract Much research is currently being performed with carbon nanotube additives to neat resin systems to enhance properties such as thermal and electrical conductivity, strength, modulus and damping. Fabrication of parts based on carbon nanotube filled resin systems requires information on their cure kinetics and rheology, which has been relatively less studied so far. This work presents an extensive experimental study that systematically characterizes the cure kinetics and viscosity as a function of degree of cure and temperature of EPON 815C/EPICURE 3274 epoxy resin system laden with carbon nanotubes. Studies are conducted to determine the effects of the carbon nanotube loading… More >

  • Open Access

    ARTICLE

    HEAT TRANSFER MEASUREMENTS FOR FLOW OF NANOFLUIDS IN MICROCHANNELS USING TEMPERATURE NANO-SENSORS

    Jiwon Yua , Seok-Won Kanga, Saeil Jeonb, Debjyoti Banerjeea,*

    Frontiers in Heat and Mass Transfer, Vol.3, No.1, pp. 1-9, 2012, DOI:10.5098/hmt.v3.1.3004

    Abstract Experiments were performed to study the forced convective heat transfer of de-ionized water (DI water) and aqueous nanofluids in a microchannel and temperature measurements were obtained using an array of nanosensors (i.e., thin film thermocouples or “TFT”). Heat flux values were calculated from the experimental measurements for temperature recorded by the TFT array. The experiments were performed for the different test fluids where the flow rate, mass concentration (of silica nanoparticles ~10-30 nm diameter) in the colloidal suspension and the wall temperature profile (as well as applied heat flux values) were varied parametrically.
    Anomalous enhancement of the convective heat… More >

  • Open Access

    ARTICLE

    ADVANCED SPREADERS FOR ENHANCED COOLING OF HIGH POWER CHIPS

    Mohamed S. El-Genka,b,c,∗, Amir F. Alia,c

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-14, 2012, DOI:10.5098/hmt.v3.4.3001

    Abstract Advanced spreaders for cooling a 10 x 10 mm underlying computer chip with a central hot spot (CHS) could remove > 85 W of dissipated thermal power at junctions’ temperature < 100o C. The spreaders comprise a 1.6 - 3.2 mm thick Cu substrate and an 80-μm thick micro-porous copper (MPC) surface cooled by saturation nucleate boiling of PF-5060 dielectric liquid. Investigated are the effects of varying the heat flux at the chip’s 1 and 4 mm2 CHS and the impedance of thermal interface material (TIM) between the Cu substrate and underlying chip. Results confirmed the effectiveness of the MPC… More >

  • Open Access

    ARTICLE

    Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss

    Thanh-Lam Nguyen1, Hao Kao1, Thanh-Tuan Nguyen2, Mong-Fong Horng1,*, Chin-Shiuh Shieh1,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2181-2205, 2024, DOI:10.32604/cmc.2024.047387

    Abstract Since its inception, the Internet has been rapidly evolving. With the advancement of science and technology and the explosive growth of the population, the demand for the Internet has been on the rise. Many applications in education, healthcare, entertainment, science, and more are being increasingly deployed based on the internet. Concurrently, malicious threats on the internet are on the rise as well. Distributed Denial of Service (DDoS) attacks are among the most common and dangerous threats on the internet today. The scale and complexity of DDoS attacks are constantly growing. Intrusion Detection Systems (IDS) have been deployed and have demonstrated… More >

  • Open Access

    ARTICLE

    Differential Expression of Genes Related to Fruit Development and Capsaicinoids Synthesis in Habanero Pepper Plants Grown in Contrasting Soil Types

    Eduardo Burgos-Valencia1,#, Federico García-Laynes1,#, Ileana Echevarría-Machado1, Fatima Medina-Lara1, Miriam Monforte-González1, José Narváez-Zapata2,*, Manuel Martínez-Estévez1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 151-183, 2024, DOI:10.32604/phyton.2023.046943

    Abstract Habanero pepper (Capsicum chinense Jacq.) is a crop of economic relevance in the Peninsula of Yucatan. Its fruits have a high level of capsaicinoids compared to peppers grown in other regions of the world, which gives them industrial importance. Soil is an important factor that affects pepper development, nutritional quality, and capsaicinoid content. However, the effect of soil type on fruit development and capsaicinoid metabolism has been little understood. This work aimed to compare the effect of soils with contrasting characteristics, black soil (BS) and red soil (RS), on the expression of genes related to the development of fruits, and… More >

  • Open Access

    REVIEW

    In vitro engineered models of neurodegenerative diseases

    ZEHRA GÜL MORÇIMEN1, ŞEYMA TAŞDEMIR2, AYLIN ŞENDEMIR3,4,*

    BIOCELL, Vol.48, No.1, pp. 79-96, 2024, DOI:10.32604/biocell.2023.045361

    Abstract Neurodegeneration is a catastrophic process that develops progressive damage leading to functional and structural loss of the cells of the nervous system and is among the biggest unavoidable problems of our age. Animal models do not reflect the pathophysiology observed in humans due to distinct differences between the neural pathways, gene expression patterns, neuronal plasticity, and other disease-related mechanisms in animals and humans. Classical in vitro cell culture models are also not sufficient for pre-clinical drug testing in reflecting the complex pathophysiology of neurodegenerative diseases. Today, modern, engineered techniques are applied to develop multicellular, intricate in vitro models and to… More >

  • Open Access

    ARTICLE

    Sparse Adversarial Learning for FDIA Attack Sample Generation in Distributed Smart Grids

    Fengyong Li1,*, Weicheng Shen1, Zhongqin Bi1, Xiangjing Su2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2095-2115, 2024, DOI:10.32604/cmes.2023.044431

    Abstract False data injection attack (FDIA) is an attack that affects the stability of grid cyber-physical system (GCPS) by evading the detecting mechanism of bad data. Existing FDIA detection methods usually employ complex neural network models to detect FDIA attacks. However, they overlook the fact that FDIA attack samples at public-private network edges are extremely sparse, making it difficult for neural network models to obtain sufficient samples to construct a robust detection model. To address this problem, this paper designs an efficient sample generative adversarial model of FDIA attack in public-private network edge, which can effectively bypass the detection model to… More >

  • Open Access

    PROCEEDINGS

    The Instability Mechanism of Moving Contact Line on the Surface of Soluble Solids

    Xudong Chen1,2, Quanzi Yuan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09318

    Abstract The wetting and instability of liquids on the surface of soluble solids is a problem of interface stability at multiple scales, which is coupled by mechanics and chemistry. This problem is crucial to application fields such as micro-nano processing and microscopic observation. In this work, the instability process of moving contact lines on the surfaces of soluble solids is investigated in experiments, theories, and simulations. Based on the unique shapes of the surfaces of soluble solids caused by instability in experiments, the concept of pagoda instability is proposed. Then the Cahn-Hilliard interfaces are developed to establish the evolution model of… More >

Displaying 11-20 on page 2 of 367. Per Page