Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,459)
  • Open Access

    ARTICLE

    Image Processing of Manganese Nodules Based on Background Gray Value Calculation

    Hade Mao1, 2, Yuliang Liu1, 2, *, Hongzhe Yan1, 2, Cheng Qian3, Jing Xue4

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 511-527, 2020, DOI:10.32604/cmc.2020.09841 - 23 July 2020

    Abstract To troubleshoot two problems arising from the segmentation of manganese nodule images-uneven illumination and morphological defects caused by white sand coverage, we propose, with reference to features of manganese nodules, a method called “background gray value calculation”. As the result of the image procession with the aid this method, the two problems above are solved eventually, together with acquisition of a segmentable image of manganese nodules. As a result, its comparison with other segmentation methods justifies its feasibility and stability. Judging from simulation results, it is indicated that this method is applicable to repair the More >

  • Open Access

    ARTICLE

    Predicting Concrete Compressive Strength Using Deep Convolutional Neural Network Based on Image Characteristics

    Sanghyo Lee1, Yonghan Ahn2, Ha Young Kim3, *

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 1-17, 2020, DOI:10.32604/cmc.2020.011104 - 23 July 2020

    Abstract In this study, we examined the efficacy of a deep convolutional neural network (DCNN) in recognizing concrete surface images and predicting the compressive strength of concrete. A digital single-lens reflex (DSLR) camera and microscope were simultaneously used to obtain concrete surface images used as the input data for the DCNN. Thereafter, training, validation, and testing of the DCNNs were performed based on the DSLR camera and microscope image data. Results of the analysis indicated that the DCNN employing DSLR image data achieved a relatively higher accuracy. The accuracy of the DSLR-derived image data was attributed… More >

  • Open Access

    ARTICLE

    Image Information Hiding Method Based on Image Compression and Deep Neural Network

    Xintao Duan1, *, Daidou Guo1, Chuan Qin2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 721-745, 2020, DOI:10.32604/cmes.2020.09463 - 20 July 2020

    Abstract Image steganography is a technique that hides secret information into the cover image to protect information security. The current image steganography is mainly to embed a smaller secret image in an area such as a texture of a larger-sized cover image, which will cause the size of the secret image to be much smaller than the cover image. Therefore, the problem of small steganographic capacity needs to be solved urgently. This paper proposes a steganography framework that combines image compression. In this framework, the Vector Quantized Variational AutoEncoder (VQ-VAE) is used to achieve the compression More >

  • Open Access

    ARTICLE

    Survey on the Application of Deep Reinforcement Learning in Image Processing

    Wei Fang1, 2, 3, ∗, Lin Pang1, Weinan Yi1

    Journal on Artificial Intelligence, Vol.2, No.1, pp. 39-58, 2020, DOI:10.32604/jai.2020.09789 - 15 July 2020

    Abstract In recent years, with the rapid development of human society, more and more complex tasks have emerged that require deep learning to automatically extract abstract feature representations from a large amount of data, and use reinforcement learning to learn the best strategy to complete the task. Through the combination of deep learning and reinforcement learning, end-to-end input and output can be achieved, and substantial breakthroughs have been made in many planning and decision-making systems with infinite states, such as games, in particular, AlphaGo, robotics, natural language processing, dialogue systems, machine translation, and computer vision. In More >

  • Open Access

    ARTICLE

    Image Super-Resolution Based on Generative Adversarial Networks: A Brief Review

    Kui Fu1, Jiansheng Peng1, 2, *, Hanxiao Zhang2, Xiaoliang Wang3, Frank Jiang4

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1977-1997, 2020, DOI:10.32604/cmc.2020.09882 - 30 June 2020

    Abstract Single image super resolution (SISR) is an important research content in the field of computer vision and image processing. With the rapid development of deep neural networks, different image super-resolution models have emerged. Compared to some traditional SISR methods, deep learning-based methods can complete the superresolution tasks through a single image. In addition, compared with the SISR methods using traditional convolutional neural networks, SISR based on generative adversarial networks (GAN) has achieved the most advanced visual performance. In this review, we first explore the challenges faced by SISR and introduce some common datasets and evaluation More >

  • Open Access

    ARTICLE

    An Efficient Bar Code Image Recognition Algorithm for Sorting System

    Desheng Zheng1, *, Ziyong Ran1, Zhifeng Liu1, Liang Li2, Lulu Tian3

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1885-1895, 2020, DOI:10.32604/cmc.2020.010070 - 30 June 2020

    Abstract In the sorting system of the production line, the object movement, fixed angle of view, light intensity and other reasons lead to obscure blurred images. It results in bar code recognition rate being low and real time being poor. Aiming at the above problems, a progressive bar code compressed recognition algorithm is proposed. First, assuming that the source image is not tilted, use the direct recognition method to quickly identify the compressed source image. Failure indicates that the compression ratio is improper or the image is skewed. Then, the source image is enhanced to identify More >

  • Open Access

    ARTICLE

    Privacy Protection for Medical Images Based on DenseNet and Coverless Steganography

    Yun Tan1, Jiaohua Qin1, *, Hao Tang2, Xuyu Xiang1, Ling Tan2, Neal N. Xiong3

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1797-1817, 2020, DOI:10.32604/cmc.2020.010802 - 30 June 2020

    Abstract With the development of the internet of medical things (IoMT), the privacy protection problem has become more and more critical. In this paper, we propose a privacy protection scheme for medical images based on DenseNet and coverless steganography. For a given group of medical images of one patient, DenseNet is used to regroup the images based on feature similarity comparison. Then the mapping indexes can be constructed based on LBP feature and hash generation. After mapping the privacy information with the hash sequences, the corresponding mapped indexes of secret information will be packed together with More >

  • Open Access

    ARTICLE

    Better Visual Image Super-Resolution with Laplacian Pyramid of Generative Adversarial Networks

    Ming Zhao1, Xinhong Liu1, Xin Yao1, *, Kun He2

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1601-1614, 2020, DOI:10.32604/cmc.2020.09754 - 30 June 2020

    Abstract Although there has been a great breakthrough in the accuracy and speed of super-resolution (SR) reconstruction of a single image by using a convolutional neural network, an important problem remains unresolved: how to restore finer texture details during image super-resolution reconstruction? This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network (ELSRGAN), based on the Laplacian pyramid to capture the high-frequency details of the image. By combining Laplacian pyramids and generative adversarial networks, progressive reconstruction of super-resolution images can be made, making model applications more flexible. In order to solve the problem of gradient disappearance,… More >

  • Open Access

    ARTICLE

    On the Detection of COVID-19 from Chest X-Ray Images Using CNN-Based Transfer Learning

    Mohammad Shorfuzzaman1, *, Mehedi Masud1

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1359-1381, 2020, DOI:10.32604/cmc.2020.011326 - 30 June 2020

    Abstract Coronavirus disease (COVID-19) is an extremely infectious disease and possibly causes acute respiratory distress or in severe cases may lead to death. There has already been some research in dealing with coronavirus using machine learning algorithms, but few have presented a truly comprehensive view. In this research, we show how convolutional neural network (CNN) can be useful to detect COVID-19 using chest X-ray images. We leverage the CNN-based pre-trained models as feature extractors to substantiate transfer learning and add our own classifier in detecting COVID-19. In this regard, we evaluate performance of five different pre-trained… More >

  • Open Access

    ARTICLE

    A New Adaptive Regularization Parameter Selection Based on Expected Patch Log Likelihood

    Jianwei Zhang1, Ze Qin1, Shunfeng Wang1, *

    Journal of Cyber Security, Vol.2, No.1, pp. 25-36, 2020, DOI:10.32604/jcs.2020.06429

    Abstract Digital images have been applied to various areas such as evidence in courts. However, it always suffers from noise by criminals. This type of computer network security has become a hot issue that can’t be ignored. In this paper, we focus on noise removal so as to provide guarantees for computer network security. Firstly, we introduce a well-known denoising method called Expected Patch Log Likelihood (EPLL) with Gaussian Mixture Model as its prior. This method achieves exciting results in noise removal. However, there remain problems to be solved such as preserving the edge and meaningful… More >

Displaying 1241-1250 on page 125 of 1459. Per Page