Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (152)
  • Open Access

    ARTICLE

    Automated Inspection of Char Morphologies in Colombian Coals Using Image Analysis

    Deisy Chaves1,5,*, Maria Trujillo1, Edward Garcia2, Juan Barraza2, Edward Lester3, Maribel Barajas4, Billy Rodriguez4, Manuel Romero4, Laura Fernández-Robles5

    Intelligent Automation & Soft Computing, Vol.26, No.3, pp. 397-405, 2020, DOI:10.32604/iasc.2020.013916

    Abstract Precise automated determination of char morphologies formed by coal during combustion can lead to more efficient industrial control systems for coal combustion. Commonly, char particles are manually classified following the ICCP decision tree which considers four morphological features. One of these features is unfused material, and this class of material not characteristic of Colombian coals. In this paper, we propose new machine learning algorithms to classify the char particles in an image based system. Our hypothesis is that supervised classification methods can outperform the 4 ‘class’ ICCP criteria. In this paper we evaluate several morphological More >

  • Open Access

    ARTICLE

    Edge Detection Based on Generative Adversarial Networks

    Xiaoyan Chen, Jiahuan Chen*, Zhongcheng Sha

    Journal of New Media, Vol.2, No.2, pp. 61-77, 2020, DOI:10.32604/jnm.2020.010062 - 21 August 2020

    Abstract Aiming at the problem that the detection effect of traditional edge detection algorithm is not good, and the problem that the existing edge detection algorithm based on convolution network cannot solve the thick edge problem from the model itself, this paper proposes a new edge detection method based on the generative adversarial network. The confrontation network consists of generator network and discriminator network, generator network is composed of U-net network and discriminator network is composed of five-layer convolution network. In this paper, we use BSDS500 training data set to train the model. Finally, several images More >

  • Open Access

    ARTICLE

    Image Processing of Manganese Nodules Based on Background Gray Value Calculation

    Hade Mao1, 2, Yuliang Liu1, 2, *, Hongzhe Yan1, 2, Cheng Qian3, Jing Xue4

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 511-527, 2020, DOI:10.32604/cmc.2020.09841 - 23 July 2020

    Abstract To troubleshoot two problems arising from the segmentation of manganese nodule images-uneven illumination and morphological defects caused by white sand coverage, we propose, with reference to features of manganese nodules, a method called “background gray value calculation”. As the result of the image procession with the aid this method, the two problems above are solved eventually, together with acquisition of a segmentable image of manganese nodules. As a result, its comparison with other segmentation methods justifies its feasibility and stability. Judging from simulation results, it is indicated that this method is applicable to repair the More >

  • Open Access

    ARTICLE

    Survey on the Application of Deep Reinforcement Learning in Image Processing

    Wei Fang1, 2, 3, ∗, Lin Pang1, Weinan Yi1

    Journal on Artificial Intelligence, Vol.2, No.1, pp. 39-58, 2020, DOI:10.32604/jai.2020.09789 - 15 July 2020

    Abstract In recent years, with the rapid development of human society, more and more complex tasks have emerged that require deep learning to automatically extract abstract feature representations from a large amount of data, and use reinforcement learning to learn the best strategy to complete the task. Through the combination of deep learning and reinforcement learning, end-to-end input and output can be achieved, and substantial breakthroughs have been made in many planning and decision-making systems with infinite states, such as games, in particular, AlphaGo, robotics, natural language processing, dialogue systems, machine translation, and computer vision. In More >

  • Open Access

    ARTICLE

    An Efficient Bar Code Image Recognition Algorithm for Sorting System

    Desheng Zheng1, *, Ziyong Ran1, Zhifeng Liu1, Liang Li2, Lulu Tian3

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1885-1895, 2020, DOI:10.32604/cmc.2020.010070 - 30 June 2020

    Abstract In the sorting system of the production line, the object movement, fixed angle of view, light intensity and other reasons lead to obscure blurred images. It results in bar code recognition rate being low and real time being poor. Aiming at the above problems, a progressive bar code compressed recognition algorithm is proposed. First, assuming that the source image is not tilted, use the direct recognition method to quickly identify the compressed source image. Failure indicates that the compression ratio is improper or the image is skewed. Then, the source image is enhanced to identify More >

  • Open Access

    ARTICLE

    A Deep Convolutional Architectural Framework for Radiograph Image Processing at Bit Plane Level for Gender & Age Assessment

    N. Shobha Rani1, *, M. Chandrajith2, B. R. Pushpa1, B. J. Bipin Nair1

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 679-694, 2020, DOI:10.32604/cmc.2020.08552

    Abstract Assessing the age of an individual via bones serves as a fool proof method in true determination of individual skills. Several attempts are reported in the past for assessment of chronological age of an individual based on variety of discriminative features found in wrist radiograph images. The permutation and combination of these features realized satisfactory accuracies for a set of limited groups. In this paper, assessment of gender for individuals of chronological age between 1-17 years is performed using left hand wrist radiograph images. A fully automated approach is proposed for removal of noise persisted… More >

  • Open Access

    ARTICLE

    Shadow detection and correction using a combined 3D GIS and image processing approach

    Safa Ridene1 , Reda Yaagoubi1, Imane Sebari1, Audrey Alajouanine2

    Revue Internationale de Géomatique, Vol.29, No.3, pp. 241-253, 2019, DOI:10.3166/rig.2019.00091

    Abstract While shadow can give useful information about size and shape of objects, it can pose problems in feature detection and object detection, thereby, it represents one of the major perturbator phenomenons frequently occurring on images and unfortunately, it is inevitable. “Shadows may lead to the failure of image analysis processes and also cause a poor quality of information which in turn leads to problems in implementation of algorithms.” (Mahajan and Bajpayee, 2015). It also affects multiple image analysis applications, whereby shadow cast by buildings deteriorate the spectral values of the surfaces. Therefore, its presence causes More >

  • Open Access

    ABSTRACT

    Vascular Deformation Analysis Based on in Vivo Intravascular Optical Coherence Tomography Imaging

    Ju Huang1, Cuiru Sun1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 67-68, 2019, DOI:10.32604/mcb.2019.05738

    Abstract Intravascular optical coherence tomography (OCT) has the characteristics of high resolution and fast imaging speed. Continuous images of the same section of the same vessel can reflect the deformation characteristics of the vessel wall under different blood pressure. Digital image processing may be used to segment various structures on the vascular wall and extract the deformation incorporating with biomechanical analysis. Image filtering plays a very important role in image processing. Median filter was used to filter salt and pepper noise in OCT images. Fuzzy function gray processing method was used to suppress irrelevant information and More >

  • Open Access

    ABSTRACT

    Image Processing/Machine-Learning for Auto-Labeling of Steel Images on Present Microstructures

    Dmitry S. Bulgarevich1,*, Susumu Tsukamoto1, Tadashi Kasuya2, Masahiko Demura1, Makoto Watanabe1,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 122-122, 2019, DOI:10.32604/icces.2019.05271

    Abstract The microstructure of steel greatly determines its mechanical properties/performance and holds information on chemical composition and processing history. Therefore, quantitative analysis of optical or SEM images on formed microstructure phases is one of the primary interests for metallurgy. So far, such analyses in laboratories are done manually by experts and are very time consuming. However, with modern microscopy techniques of automated image acquisitions over the large imaging areas and even by using of sample slicing for three-dimensional imaging, the amount of image data could be overwhelming for manual examinations. In this respect, there is a… More >

  • Open Access

    ARTICLE

    3D Bounding Box Proposal for on-Street Parking Space Status Sensing in Real World Conditions

    Yaocheng Zheng1, Weiwei Zhang1,*, Xuncheng Wu1, Bo Zhao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.3, pp. 559-576, 2019, DOI:10.32604/cmes.2019.05684

    Abstract Vision-based technologies have been extensively applied for on-street parking space sensing, aiming at providing timely and accurate information for drivers and improving daily travel convenience. However, it faces great challenges as a partial visualization regularly occurs owing to occlusion from static or dynamic objects or a limited perspective of camera. This paper presents an imagery-based framework to infer parking space status by generating 3D bounding box of the vehicle. A specially designed convolutional neural network based on ResNet and feature pyramid network is proposed to overcome challenges from partial visualization and occlusion. It predicts 3D… More >

Displaying 131-140 on page 14 of 152. Per Page