Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (263)
  • Open Access

    ARTICLE

    Prairie Araneida Optimization Based Fused CNN Model for Intrusion Detection

    Nishit Patil, Shubhalaxmi Joshi*

    Computer Systems Science and Engineering, Vol.49, pp. 49-77, 2025, DOI:10.32604/csse.2024.057702 - 03 January 2025

    Abstract Intrusion detection (ID) is a cyber security practice that encompasses the process of monitoring network activities to identify unauthorized or malicious actions. This includes problems like the difficulties of existing intrusion detection models to identify emerging attacks, generating many false alarms, and their inability and difficulty to adapt themselves with time when it comes to threats, hence to overcome all those existing challenges in this research develop a Prairie Araneida optimization based fused Convolutional Neural Network model (PAO-CNN) for intrusion detection. The fused CNN (Convolutional Neural Netowrk) is a remarkable development since it combines statistical… More >

  • Open Access

    ARTICLE

    Enhancing Private Cloud Based Intrusion Prevention and Detection System: An Unsupervised Machine Learning Approach

    Theophile Fozin Fonzin1,2, Halilou Claude Bobo Hamadjida2, Aurelle Tchagna Kouanou2,3,*, Valery Monthe4, Anicet Brice Mezatio5, Michael Sone Ekonde6

    Journal of Cyber Security, Vol.6, pp. 155-177, 2024, DOI:10.32604/jcs.2024.059265 - 09 January 2025

    Abstract Cloud computing is a transformational paradigm involving the delivery of applications and services over the Internet, using access mechanisms through microprocessors, smartphones, etc. Latency time to prevent and detect modern and complex threats remains one of the major challenges. It is then necessary to think about an intrusion prevention system (IPS) design, making it possible to effectively meet the requirements of a cloud computing environment. From this analysis, the central question of the present study is to minimize the latency time for efficient threat prevention and detection in the cloud. To design this IPS design… More >

  • Open Access

    ARTICLE

    Blockchain-Enabled Mitigation Strategies for Distributed Denial of Service Attacks in IoT Sensor Networks: An Experimental Approach

    Kithmini Godewatte Arachchige1, Mohsin Murtaza2, Chi-Tsun Cheng2, Bader M. Albahlal3,*, Cheng-Chi Lee4,5,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3679-3705, 2024, DOI:10.32604/cmc.2024.059378 - 19 December 2024

    Abstract Information security has emerged as a crucial consideration over the past decade due to escalating cyber security threats, with Internet of Things (IoT) security gaining particular attention due to its role in data communication across various industries. However, IoT devices, typically low-powered, are susceptible to cyber threats. Conversely, blockchain has emerged as a robust solution to secure these devices due to its decentralised nature. Nevertheless, the fusion of blockchain and IoT technologies is challenging due to performance bottlenecks, network scalability limitations, and blockchain-specific security vulnerabilities. Blockchain, on the other hand, is a recently emerged information… More >

  • Open Access

    ARTICLE

    IoT-CDS: Internet of Things Cyberattack Detecting System Based on Deep Learning Models

    Monir Abdullah*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4265-4283, 2024, DOI:10.32604/cmc.2024.059271 - 19 December 2024

    Abstract The rapid growth and pervasive presence of the Internet of Things (IoT) have led to an unparalleled increase in IoT devices, thereby intensifying worries over IoT security. Deep learning (DL)-based intrusion detection (ID) has emerged as a vital method for protecting IoT environments. To rectify the deficiencies of current detection methodologies, we proposed and developed an IoT cyberattacks detection system (IoT-CDS) based on DL models for detecting bot attacks in IoT networks. The DL models—long short-term memory (LSTM), gated recurrent units (GRUs), and convolutional neural network-LSTM (CNN-LSTM) were suggested to detect and classify IoT attacks.… More >

  • Open Access

    ARTICLE

    Robust Network Security: A Deep Learning Approach to Intrusion Detection in IoT

    Ammar Odeh*, Anas Abu Taleb

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4149-4169, 2024, DOI:10.32604/cmc.2024.058052 - 19 December 2024

    Abstract The proliferation of Internet of Things (IoT) technology has exponentially increased the number of devices interconnected over networks, thereby escalating the potential vectors for cybersecurity threats. In response, this study rigorously applies and evaluates deep learning models—namely Convolutional Neural Networks (CNN), Autoencoders, and Long Short-Term Memory (LSTM) networks—to engineer an advanced Intrusion Detection System (IDS) specifically designed for IoT environments. Utilizing the comprehensive UNSW-NB15 dataset, which encompasses 49 distinct features representing varied network traffic characteristics, our methodology focused on meticulous data preprocessing including cleaning, normalization, and strategic feature selection to enhance model performance. A robust… More >

  • Open Access

    ARTICLE

    Performance Analysis of Machine Learning-Based Intrusion Detection with Hybrid Feature Selection

    Mohammad Al-Omari1, Qasem Abu Al-Haija2,*

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1537-1555, 2024, DOI:10.32604/csse.2024.056257 - 22 November 2024

    Abstract More businesses are deploying powerful Intrusion Detection Systems (IDS) to secure their data and physical assets. Improved cyber-attack detection and prevention in these systems requires machine learning (ML) approaches. This paper examines a cyber-attack prediction system combining feature selection (FS) and ML. Our technique’s foundation was based on Correlation Analysis (CA), Mutual Information (MI), and recursive feature reduction with cross-validation. To optimize the IDS performance, the security features must be carefully selected from multiple-dimensional datasets, and our hybrid FS technique must be extended to validate our methodology using the improved UNSW-NB 15 and TON_IoT datasets. More >

  • Open Access

    REVIEW

    A Review of Generative Adversarial Networks for Intrusion Detection Systems: Advances, Challenges, and Future Directions

    Monirah Al-Ajlan*, Mourad Ykhlef

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2053-2076, 2024, DOI:10.32604/cmc.2024.055891 - 18 November 2024

    Abstract The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems (IDSs). IDSs have become a research hotspot and have seen remarkable performance improvements. Generative adversarial networks (GANs) have also garnered increasing research interest recently due to their remarkable ability to generate data. This paper investigates the application of (GANs) in (IDS) and explores their current use within this research field. We delve into the adoption of GANs within signature-based, anomaly-based, and hybrid IDSs, focusing on their objectives, methodologies, and advantages. Overall, GANs have been widely employed, mainly focused on solving the More >

  • Open Access

    ARTICLE

    Augmenting Internet of Medical Things Security: Deep Ensemble Integration and Methodological Fusion

    Hamad Naeem1, Amjad Alsirhani2,*, Faeiz M. Alserhani3, Farhan Ullah4, Ondrej Krejcar1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2185-2223, 2024, DOI:10.32604/cmes.2024.056308 - 31 October 2024

    Abstract When it comes to smart healthcare business systems, network-based intrusion detection systems are crucial for protecting the system and its networks from malicious network assaults. To protect IoMT devices and networks in healthcare and medical settings, our proposed model serves as a powerful tool for monitoring IoMT networks. This study presents a robust methodology for intrusion detection in Internet of Medical Things (IoMT) environments, integrating data augmentation, feature selection, and ensemble learning to effectively handle IoMT data complexity. Following rigorous preprocessing, including feature extraction, correlation removal, and Recursive Feature Elimination (RFE), selected features are standardized… More >

  • Open Access

    ARTICLE

    Distributed Federated Split Learning Based Intrusion Detection System

    Rasha Almarshdi1,2,*, Etimad Fadel1, Nahed Alowidi1, Laila Nassef1

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 949-983, 2024, DOI:10.32604/iasc.2024.056792 - 31 October 2024

    Abstract The Internet of Medical Things (IoMT) is one of the critical emerging applications of the Internet of Things (IoT). The huge increases in data generation and transmission across distributed networks make security one of the most important challenges facing IoMT networks. Distributed Denial of Service (DDoS) attacks impact the availability of services of legitimate users. Intrusion Detection Systems (IDSs) that are based on Centralized Learning (CL) suffer from high training time and communication overhead. IDS that are based on distributed learning, such as Federated Learning (FL) or Split Learning (SL), are recently used for intrusion… More >

  • Open Access

    ARTICLE

    APSO-CNN-SE: An Adaptive Convolutional Neural Network Approach for IoT Intrusion Detection

    Yunfei Ban, Damin Zhang*, Qing He, Qianwen Shen

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 567-601, 2024, DOI:10.32604/cmc.2024.055007 - 15 October 2024

    Abstract The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things (IoT) networks. The proliferation of unknown attacks and related risks, such as zero-day attacks and Distributed Denial of Service (DDoS) attacks triggered by botnets, have resulted in information leakage and property damage. Therefore, developing an efficient and realistic intrusion detection system (IDS) is critical for ensuring IoT network security. In recent years, traditional machine learning techniques have struggled to learn the complex associations between multidimensional features in network traffic, and the excellent performance of deep learning techniques,… More >

Displaying 21-30 on page 3 of 263. Per Page