Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access


    Unsupervised Support Vector Machine Based Principal Component Analysis for Structural Health Monitoring

    Chang Kook Oh1, Hoon Sohn1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.3, pp. 91-100, 2008, DOI:10.3970/icces.2008.008.091

    Abstract Structural Health Monitoring (SHM) is concerned with identifying damage based on measurements obtained from structures being monitored. For the civil structures exposed to time-varying environmental and operational conditions, it is inevitable that environmental and operational variability produces an adverse effect on the dynamic behaviors of the structures. Since the signals are measured under the influence of these varying conditions, normalizing the data to distinguish the effects of damage from those caused by the environmental and operational variations is important in order to achieve successful structural health monitoring goals. In this paper, kernel principal component analysis (kernel PCA) using unsupervised support… More >

Displaying 1-10 on page 1 of 1. Per Page  

Share Link