Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (205)
  • Open Access

    ARTICLE

    Experimental Analysis of a Pneumatic Drop-on-Demand (DOD) Injection Technology for 3D Printing Using a Gallium-Indium Alloy

    Yanpu Chao1, Hao Yi2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.3, pp. 587-595, 2021, DOI:10.32604/fdmp.2021.015478 - 29 April 2021

    Abstract Many liquid metals have a high boiling point, strong electrical conductivity, high thermal conductivity, and non-toxic properties, which make them ideal targets for applications in different fields such as optics, microcircuits, electronic switches, micro-electromechanical System (MEMS) devices and 3D printing manufacturing. However, owing to the generally high surface tension of these liquids, achieving uniform micro-droplets is often a challenge due to the inherent difficulties in controlling their size and shape. In this study, a gallium indium alloy (GaIn24.5) has been used in combination with a pneumatic drop-on-demand (DOD) injection technology to carry out a series of More >

  • Open Access

    ARTICLE

    A Double-Phase High-Frequency Traveling Magnetic Field Developed for Contactless Stirring of Low-Conducting Liquid Materials

    Xiaodong Wang1,2,*, Ernst Roland3, Fautrelle Yves3

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 469-486, 2021, DOI:10.32604/cmes.2021.013597 - 19 April 2021

    Abstract The use of low electrically conducting liquids is more and more widespread. This is the case for molten glass, salt or slag processing, ionic liquids used in biotechnology, batteries in energy storage and metallurgy. The present paper deals with the design of a new electromagnetic induction device that can heat and stir low electrically-conducting liquids. It consists of a resistance-capacity-inductance circuit coupled with a low-conducting liquid load. The device is supplied by a unique electric power source delivering a single-phase high frequency electric current. The main working principle of the circuit is based on a… More >

  • Open Access

    ARTICLE

    A Pressure-Drop Model for Oil-Gas Two-Phase Flow in Horizontal Pipes

    Xinke Yang1, Shanzhi Shi1, Hui Zhang1, Yuzhe Yang2,3, Zilong Liu2,3, Ruiquan Liao2,3,*, Joseph X. F. Ribeiro4

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 371-383, 2021, DOI:10.32604/fdmp.2021.011486 - 02 April 2021

    Abstract The accurate prediction of the pressure distribution of highly viscous fluids in wellbores and pipelines is of great significance for heavy oil production and transportation. The flow behavior of high-viscosity fluids is quite different with respect to that of low-viscosity fluids. Currently, the performances of existing pressure-drop models seem to be relatively limited when they are applied to high-viscosity fluids. In this study, a gas-liquid two-phase flow experiment has been carried out using a 60 mm ID horizontal pipe with air and white oil. The experimental results indicate that viscosity exerts a significant influence on More >

  • Open Access

    ARTICLE

    Nonlinear Thermal Buoyancy on Ferromagnetic Liquid Stream Over a Radiated Elastic Surface with Non Fourier Heat Flux

    T. K. Sreelakshmi1, Abraham Annamma1, A. S. Chethan1, M. Krishna Murthy2, C. S. K. Raju3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 599-616, 2021, DOI:10.32604/cmes.2021.013077 - 21 January 2021

    Abstract The current article discusses the heat transfer characteristics of ferromagnetic liquid over an elastic surface with the thermal radiation and non-Fourier heat flux. In most of the existing studies, the heat flux is considered as constant, but whereas we incorporated the non-Fourier flux to get the exact performance of the flow. Also, we excluded the PWT and PHF cases to control the boundary layer of the flow. The governing equations related to our contemplate are changed into non-linear ordinary differential equations (ODE’s) by utilizing appropriate similarity changes, which are at the point enlightened by Runge–Kutta… More >

  • Open Access

    ARTICLE

    Slow Pyrolysis of Sugarcane Bagasse for the Production of Char and the Potential of Its By-Product for Wood Protection

    Febrina Dellarose Boer1,2,3, Jérémy Valette1,2, Jean-Michel Commandré1,2, Mériem Fournier3,4, Marie-France Thévenon1,2,*

    Journal of Renewable Materials, Vol.9, No.1, pp. 97-117, 2021, DOI:10.32604/jrm.2021.013147 - 30 November 2020

    Abstract Sugarcane bagasse was pyrolyzed using a laboratory fixed bed reactor to produce char and its by-product (pyrolysis liquid). The pyrolysis experiments were carried out using different temperatures (400°C and 500°C), heating rate (1 °C/min and 10 °C/min), and holding time (30 min and 60 min). Char was characterized according to its thermal properties, while the pyrolysis liquid was tested for its anti-fungal and anti-termite activities. Pyrolysis temperature and heating rate had a significant influence on the char properties and the yield of char and pyrolysis liquid, where a high-quality char and high yield of pyrolysis… More >

  • Open Access

    ARTICLE

    EFFECTS OF SERRATED PULSATING AIRFLOW ON LIQUID FILM EVAPORATION IN A VERTICAL CHANNEL: A NUMERICAL STUDY

    Changming Linga,b,*, Yin Zhonga,b

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-6, 2020, DOI:10.5098/hmt.14.25

    Abstract Effects of serrated pulsating airflow on liquid film evaporation in a falling film channel was numerically studied based on a two-dimensional model. The mechanism of pulsating airflow evaporation was studied as the pulsating airflow swept across the vertical liquid film surface at the stagnant temperature. Effects of amplitude, frequency, and velocity of the serrated pulsating airflow at certain evaporation time on evaporation were analyzed. Compared with the uniform airflow, the highest relative evaporation of liquid film on vertical pipe inner surface was increased by about 0.3 %. When the airflow was pulsating, the cycle of More >

  • Open Access

    ARTICLE

    PREDICTION OF MASS TRANSFER COEFFICIENT OF THE CONTINUOUS PHASE IN A STRUCTURED PACKED EXTRACTION COLUMN IN THE PRESENCE OF SIO2 NANOPARTICLES

    Fereshteh Salimi Nanadegani, Bengt Sunden*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-11, 2020, DOI:10.5098/hmt.14.21

    Abstract In this experimental study, mass transfer and hydrodynamic parameters of water/kerosene/acetic acid system in a packed column were investigated, in which the mass transfer direction was set from the continuous phase (saturated water of kerosene and acetic acid) to the dispersed phase (saturated kerosene of water) in all the experiments. To assess the impact of nanoparticles on mass transfer, the experiments were performed in the presence of SiO2 nanoparticles and absence of the nanoparticles. The results showed that the addition of the nanoparticles to the base fluid (saturated kerosene of water) increased the mass transfer efficiency More >

  • Open Access

    ARTICLE

    COMPREHENSIVE EXAMINATION OF THE THREE-DIMENSIONAL ROTATING FLOW OF A UCM NANOLIQUID OVER AN EXPONENTIALLY STRETCHABLE CONVECTIVE SURFACE UTILIZING THE OPTIMAL HOMOTOPY ANALYSIS METHOD

    K.V. Prasada, Hanumesh Vaidyaa,*, O. D. Makindeb , K. Vajraveluc , A. Wakifd , Hussain Bashaa

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-12, 2020, DOI:10.5098/hmt.14.11

    Abstract This article explores the three-dimensional (3D) rotating flow of Upper Convected Maxwell (UCM) nanoliquid over an exponentially stretching sheet with a convective boundary condition and zero mass flux for the nanoparticles concentration. The impacts of velocity slip and hall current are being considered. The suitable similarity transformations are employed to reduce the governing partial differential equations into ordinary ones. These systems of equations are highly non-linear, coupled and in turn solved by an efficient semi-analytical scheme known as optimal homotopy analysis method (OHAM). The effects of various physical constraints on velocity, temperature, and concentration fields More >

  • Open Access

    ARTICLE

    EXPERIMENT STUDY ON THE BOILING HEAT TRANSFER OF LIQUID FILM IN A ROTATING PIPE

    Wenlei Lian, Zijian Sun, Taoyi Han, Yimin Xuan*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-6, 2020, DOI:10.5098/hmt.14.10

    Abstract An experimental facility is developed to investigate the characteristics of the nucleate boiling heat transfer in a rotating water film. The High speed photography technique is used to visualize the flow field of the rotating water film. Along with the bubble photographs, the centrifugal acceleration, heat flux into the film, and the heat transfer coefficient are calculated to learn the heat transfer characteristics of the water film. It is found that the boiling heat transfer coefficient decreases with the increment of heat flux. The heat transfer coefficient increases with acceleration increasing from 20g to 60g, More >

  • Open Access

    ARTICLE

    INFLUENCE OF CRITICAL PARAMETERS ON LIQUID THIN FILM FLOW OF CASSON NANO FLUID OVER ELONGATED SHEET UNDER THERMOPHOROSIS AND BROWNIAN MOTION

    N. Vijayaa,*, Sunil Babu Gb , Vellanki Lakshmi Nc

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-8, 2020, DOI:10.5098/hmt.15.23

    Abstract Present investigation aims at scrutinizing the properties of heat and mass transfer phenomena of liquid thin film of Casson Nano fluid over elongated sheet under the influence of thermophorosis and Brownian motion. Casson Nano particle effect on thermophorotic force and on Brownian force is studied. Variables of similarity were induced to transmute partial differential equations into dimensionless equations and are resolved numerically by elegant method bvp 4c. Thin film thickness is calculated using MATHEMATICA for different values of critical parameters. Velocity profiles diminishes for higher values of Casson parameter and magnetic field parameter. The temperature More >

Displaying 91-100 on page 10 of 205. Per Page