Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (205)
  • Open Access

    ARTICLE

    Improving Existing Drainage and Gas Recovery Technologies: An Experimental Study on the Wellbore Flow in a Horizontal Well

    Shan Jin1,2,3, Xiaohong Bai4, Wei Luo1,2,3,*, Li Li4, Ruiquan Liao1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1229-1242, 2020, DOI:10.32604/fdmp.2020.011051 - 17 December 2020

    Abstract With the increasing number of horizontal wells with low pressure, low yield, and water production, the phenomenon of water and liquid accumulation in gas wells is becoming progressively more serious. In order to fix these issues, it is necessary to improve existing drainage and gas recovery technologies, increase the fluid carrying capacity of these wells, and ensure that the bottom-hole airflow has enough energy to transport the liquid to the wellhead. Among the many techniques of drainage and gas recovery, the gas lift has recently become a popular method. In the present study, through the… More >

  • Open Access

    ARTICLE

    Chemical Constituents of Pedicularis longiflora var. tubiformis (Orobanchaceae), a Common Hemiparasitic Medicinal Herb from the Qinghai Lake Basin, China

    Feng Liu1,2,3, Zilan Ma1,2,3, Marcos A. Caraballo-Ortiz4, Hui Zhang5, Xu Su1,2,3, Yuping Liu1,2,3,*

    Phyton-International Journal of Experimental Botany, Vol.89, No.4, pp. 1083-1090, 2020, DOI:10.32604/phyton.2020.011239 - 09 November 2020

    Abstract Pedicularis longiflora var. tubiformis (Orobanchaceae) is an abundant parasitic herb mainly found in the Xiaopohu wetland of the Qinghai Lake Basin in Northwestern China. The species has an important local medicinal value, and in this study, we evaluated the chemical profile of its stems, leaves and seeds using mass spectrometry. Dried samples of stems, leaves and seeds were grinded, weighted, and used for a series of extractions with an ultrasonic device at room temperature. The chemical profiles for each tissue were determined using Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid ChromatographyMass Spectrometry (LC-MS). Twenty-seven amino acids and organic… More >

  • Open Access

    ARTICLE

    Fast Superfine Components and Sound Packets in Phenomena Induced by the Impact of a Drop on a Target Fluid in Quiescent Conditions

    Yuli D. Chashechkin*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.4, pp. 773-800, 2020, DOI:10.32604/fdmp.2020.09001 - 11 August 2020

    Abstract The structure of the flow and the acoustic signals generated by the impact of a freely falling drop of water with an underlying quiescent fluid have been investigated for droplets having diameter 0.5 cm and a contact velocity in the range 1.5 < U < 5 m/s. The experimental study has been supported by high-resolution videos of the flow (as seen from above and from the side). The evolution of ejecta, spikes, droplets spray, cavity, splash, secondary cavity, streamer, secondary droplets and sequence of capillary waves is reported accordingly. In particular, perturbations of the smoothed… More >

  • Open Access

    ARTICLE

    Effect of the Inclination Angle on Slippage Loss in Gas-Liquid Two-Phase Flow

    Yushan Liu1,2, Yubin Su3, Zhenhua Wu4, Wei Luo1,2, Ruiquan Liao1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 475-488, 2020, DOI:10.32604/fdmp.2020.08896 - 25 May 2020

    Abstract The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow. The existing studies on this subject have generally been based on vertical and horizontal wells. Only a few of them have considered inclined pipes. In the present work a new focused study is presented along these lines. More specifically, we use the non-slip pressure drop model with Flanigan’s fluctuation correction coefficient formula (together with the parameters of slippage density, slippage pressure drop and slippage ratio) to analyze the influence of the inclination angle on slippage… More >

  • Open Access

    ARTICLE

    On the Liquid-Vapor Phase-Change Interface Conditions for Numerical Simulation of Violent Separated Flows

    Matthieu Ancellin1, *, Laurent Brosset2, Jean-Michel Ghidaglia1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 359-381, 2020, DOI:10.32604/fdmp.2020.08642 - 21 April 2020

    Abstract Numerous models have been proposed in the literature to include phase change into numerical simulations of two-phase flows. This review paper presents the modeling options that have been taken in order to obtain a model for violent separated flows with application to sloshing wave impacts. A relaxation model based on linear non-equilibrium thermodynamics has been chosen to compute the rate of phase change. The integration in the system of partial differential equations is done through a non-conservative advection term. For each of these modelling choices, some alternative models from the literature are presented and discussed. More >

  • Open Access

    ARTICLE

    IMPACT OF VARIABLE LIQUID PROPERTIES ON PERISTALTIC MECHANISM OF CONVECTIVELY HEATED JEFFREY FLUID IN A SLIPPERY ELASTIC TUBE

    B.B. Divyaa , G. Manjunathaa,† , C. Rajashekhara, Hanumesh Vaidyab, K.V. Prasadc

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-9, 2019, DOI:10.5098/hmt.12.15

    Abstract The present paper examines the peristaltic mechanism of a Jeffrey fluid through an elastic tube. The influence of velocity slip, convective boundary conditions, and variable liquid properties are taken into account. Closed form solutions are obtained for velocity, flux and temperature fields. In order to linearize the temperature equation, perturbation technique is employed. Also, the flux is determined theoretically via Rubinow and Keller and Mazumdar approach and the results are compared graphically. The effects of various vital parameters on the fluid flow are sketched and analyzed graphically. The findings emphasize the importance of elastic parameters More >

  • Open Access

    ARTICLE

    PERFORMANCE OF NANOPOROUS FILTRATION MEMBRANE WITH CONICAL PORES: FOR A LIQUID-PARTICLE SEPARATION

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-6, 2019, DOI:10.5098/hmt.12.14

    Abstract An analysis was developed for the flow resistance of the nanoporous filtration membrane with conical pores for a liquid-particle separation, based on the nanoscale flow model. The calculation results show that there exists the optimum cone angle of the conical pore which gives the lowest flow resistance and thus the highest flux of the membrane; This optimum cone angle of the conical pore depends on the radius of the small opening of the conical pore, the passing liquid-pore wall interaction and the membrane thickness. The equations were regressed out for calculating this optimum cone angle More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER IN A PARALLELOGRAMIC ENCLOSURE HAVING AN INNER CIRCULAR CYLINDER USING LIQUID NANOFLUID

    Hasan Sh. Majdia , Ammar Abdulkadhimb,* , Azher M. Abedb

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-14, 2019, DOI:10.5098/hmt.12.2

    Abstract Fluid flow and natural convection heat transfer in a parallelogram enclosure with an inner circular cylinder using Cu-water nanofluid are studied numerically. Dimensionless Navier-Stokes and energy equations are solved numerically using finite element method based two-dimensional flow and steady-state conditions. This study evaluates the effect of different concentrations of Cu-water nanofluids (0% to 6%) with different Rayleigh numbers 103 ≤ Ra ≤ 106 under isotherm wall temperatures. The effects of geometrical parameters of the parallelogram enclosure (inclination angle in range of 0 ≤ α ≤ 30 and location of inner circular cylinder -0.2 ≤ H ≤… More >

  • Open Access

    ARTICLE

    Slug Flow Characteristics in Inclined and Vertical Channels

    Zhihui Wang1,2,3, Wei Luo1,2,3,*, Ruiquan Liao1,2,3, Xiangwei Xie4, Fuwei Han5, Hongying Wang6

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 583-595, 2019, DOI:10.32604/fdmp.2019.06847

    Abstract Horizontal well production technology gradually occupies a dominant position in the petroleum field. With the rise in water production in the later stage of exploitation, slug flow phenomena will exist in horizontal, inclined and even vertical sections of gas wells. To grasp the flow law of slug flow and guide engineering practice, the flow law of slug flow at various inclination angles (30°~90°) is studied by means of the combination of laboratory experiments (including high frequency pressure data acquisition system) and finite element numerical simulation. The results reveal that because of the delay of pressure… More >

  • Open Access

    ARTICLE

    On the Development of a Model for the Prediction of Liquid Loading in Gas Wells with an Inclined Section

    Mengna Liao1,2, Ruiquan Liao1,2, Jie Liu1,2,*, Shuangquan Liu3, Li Li3, Xiuwu Wang1,2, Yang Cheng1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 527-544, 2019, DOI:10.32604/fdmp.2019.07903

    Abstract The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology. In the present work, we describe the outcomes of experiments conducted using air-water mixtures in a horizontal well. The results show that the configuration with an inclined section is the most susceptible to liquid loading. Laboratory experiments in an inclined pipe were also conducted to analyze the variation of the critical gas flow rate under different angles, pressure and liquid volume (taking the equal liquid volume at inlet and More >

Displaying 101-110 on page 11 of 205. Per Page