Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (204)
  • Open Access

    ARTICLE

    Influence of Thermocapillary Convection on Solid-liquid Interface

    K. Matsunaga1, H. Kawamura1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 59-64, 2006, DOI:10.3970/fdmp.2006.002.059

    Abstract Existing studies on solidification phenomena mainly focused on the solidification processes per se. In real systems, however, one cannot neglect the effects of molten material convective flow, such as natural and thermocapillary convection (they strongly affect the resulting quality of the solidified materials). The present study aims to experimentally investigate on the effect of the thermocapillary flow upon the directional solidification in a liquid layer with a free upper surface. If no free surface exists, the solid--liquid interface (SLI) is vertical and straight, while, with the free surface, the SLI is inclined against the wall-normal More >

  • Open Access

    ARTICLE

    Thermocapillary Effects in Systems with Variable Liquid Mass Exposed to Concentrated Heating

    M.El-Gammal1, J.M.Floryan1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 17-26, 2006, DOI:10.3970/fdmp.2006.002.017

    Abstract Interface deformation and thermocapillary rupture in a cavity with free upper surface subject to concentrated heating from above is investigated. The dynamics of the process is modulated by placing different amounts of liquid in the cavity. The results determined for large Biot and zero Marangoni numbers show the existence of limit points beyond which steady, continuous interface cannot exist and processes leading to the interface rupture develop. Evolution of the limit point as a function of the mass of the liquid is investigated. The topology of the flow field is found to be qualitatively similar, More >

  • Open Access

    ARTICLE

    A First-Principles Computational Framework for Liquid Mineral Systems

    B.B. Karki1, D. Bhattarai1, L. Stixrude2

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 107-118, 2006, DOI:10.3970/cmc.2006.003.107

    Abstract Computer modeling of liquid phase poses tremendous challenge: It requires a relatively large simulation size, long simulation time and accurate interatomic interaction and as such, it produces massive amounts of data. Recent advances in hardware and software have made it possible to accurately simulate the liquid phase. This paper reports the details of methodology used in the context of liquid simulations and subsequent analysis of the output data. For illustration purpose, we consider the results for the liquid phases of two geophysically relevant materials, namely MgO and MgSiO3. The simulations are performed using the parallel first-principles More >

  • Open Access

    ARTICLE

    Liquid Particles Tracing in Three-dimensional Buoyancy-driven Flows

    D. E. Melnikov1, V. M. Shevtsova2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.2, pp. 189-200, 2005, DOI:10.3970/fdmp.2005.001.189

    Abstract Buoyancy-driven convective flows are numerically analyzed in a cubic enclosure, containing a liquid subjected to a temperature difference between opposite lateral walls; all other walls are thermally insulated. The stationary gravity vector is perpendicular to the applied temperature gradient. The steady flow patterns are investigated within the framework of a liquid particles tracing technique. Three tracing techniques are compared: the first, based on a trilinear interpolation of the liquid velocity defined on the computational grid and an eighth order in time Runge-Kutta method; the second and the third, using a resampling the velocity field on… More >

Displaying 201-210 on page 21 of 204. Per Page