Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,797)
  • Open Access

    ARTICLE

    Understanding the Language of ISIS: An Empirical Approach to Detect Radical Content on Twitter Using Machine Learning

    Zia Ul Rehman1,2, Sagheer Abbas1, Muhammad Adnan Khan3,*, Ghulam Mustafa2, Hira Fayyaz4, Muhammad Hanif1,2, Muhammad Anwar Saeed5

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1075-1090, 2021, DOI:10.32604/cmc.2020.012770 - 26 November 2020

    Abstract The internet, particularly online social networking platforms have revolutionized the way extremist groups are influencing and radicalizing individuals. Recent research reveals that the process initiates by exposing vast audiences to extremist content and then migrating potential victims to confined platforms for intensive radicalization. Consequently, social networks have evolved as a persuasive tool for extremism aiding as recruitment platform and psychological warfare. Thus, recognizing potential radical text or material is vital to restrict the circulation of the extremist chronicle. The aim of this research work is to identify radical text in social media. Our contributions are… More >

  • Open Access

    ARTICLE

    Smart CardioWatch System for Patients with Cardiovascular Diseases Who Live Alone

    Raisa Nazir Ahmed Kazi1,*, Manjur Kolhar2, Faiza Rizwan2

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1237-1250, 2021, DOI:10.32604/cmc.2020.012707 - 26 November 2020

    Abstract The widespread use of smartwatches has increased their specific and complementary activities in the health sector for patient’s prognosis. In this study, we propose a framework referred to as smart forecasting CardioWatch (SCW) to measure the heart-rate variation (HRV) for patients with myocardial infarction (MI) who live alone or are outside their homes. In this study, HRV is used as a vital alarming sign for patients with MI. The performance of the proposed framework is measured using machine learning and deep learning techniques, namely, support vector machine, logistic regression, and decision-tree classification techniques. The results More >

  • Open Access

    ARTICLE

    Performance Estimation of Machine Learning Algorithms in the Factor Analysis of COVID-19 Dataset

    Ashutosh Kumar Dubey1,*, Sushil Narang1, Abhishek Kumar1, Satya Murthy Sasubilli2, Vicente García-Díaz3

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1921-1936, 2021, DOI:10.32604/cmc.2020.012151 - 26 November 2020

    Abstract Novel Coronavirus Disease (COVID-19) is a communicable disease that originated during December 2019, when China officially informed the World Health Organization (WHO) regarding the constellation of cases of the disease in the city of Wuhan. Subsequently, the disease started spreading to the rest of the world. Until this point in time, no specific vaccine or medicine is available for the prevention and cure of the disease. Several research works are being carried out in the fields of medicinal and pharmaceutical sciences aided by data analytics and machine learning in the direction of treatment and early… More >

  • Open Access

    ARTICLE

    Diffusion of a Nonvolatile Fuel Spray in Swirl Flow

    Yanju Wei1,*, Jie Zhang1, Shengcai Deng1, Yajie Zhang1, Yajing Yang2, Hao Chen3

    Energy Engineering, Vol.118, No.1, pp. 73-87, 2021, DOI:10.32604/EE.2020.012482 - 17 November 2020

    Abstract The diffusion of fuel spray in swirl flow is vital for the combustion of diesel engine, however, the researches on this is still mysterious due to the obstacles on direct investigations on a real engine. The research of intake swirl in engine at present normally use CFD simulation or based on data analysis of combustion and exhaust emission, the specific mixing process of fuel in swirl flow still not very clear. In this paper, a rapid compression machine (RCM) with an optical combustion chamber was established with the mean compression velocity of 7.55 m/s. Three… More >

  • Open Access

    ARTICLE

    Analysis of the Smart Player’s Impact on the Success of a Team Empowered with Machine Learning

    Muhammad Adnan Khan1,*, Mubashar Habib1, Shazia Saqib1, Tahir Alyas1, Khalid Masood Khan1, Mohammed A. Al Ghamdi2, Sultan H. Almotiri2

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 691-706, 2021, DOI:10.32604/cmc.2020.012542 - 30 October 2020

    Abstract The innovation and development in data science have an impact in all trades of life. The commercialization of sport has encouraged players, coaches, and other concerns to use technology to be in better position than r their opponents. In the past, the focus was on improved training techniques for better physical performance. These days, sports analytics identify the patterns in the performance and highlight strengths and weaknesses of potential players. Sports analytics not only predict the performance of players in the near future but it also performs predictive modeling for a particular behavior of a… More >

  • Open Access

    ARTICLE

    Smart Healthcare Using Data-Driven Prediction of Immunization Defaulters in Expanded Program on Immunization (EPI)

    Sadaf Qazi1, Muhammad Usman1, Azhar Mahmood1, Aaqif Afzaal Abbasi2, Muhammad Attique3, Yunyoung Nam4,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 589-602, 2021, DOI:10.32604/cmc.2020.012507 - 30 October 2020

    Abstract Immunization is a noteworthy and proven tool for eliminating lifethreating infectious diseases, child mortality and morbidity. Expanded Program on Immunization (EPI) is a nation-wide program in Pakistan to implement immunization activities, however the coverage is quite low despite the accessibility of free vaccination. This study proposes a defaulter prediction model for accurate identification of defaulters. Our proposed framework classifies defaulters at five different stages: defaulter, partially high, partially medium, partially low, and unvaccinated to reinforce targeted interventions by accurately predicting children at high risk of defaulting from the immunization schedule. Different machine learning algorithms are… More >

  • Open Access

    ARTICLE

    Enhance Intrusion Detection in Computer Networks Based on Deep Extreme Learning Machine

    Muhammad Adnan Khan1,*, Abdur Rehman2, Khalid Masood Khan1, Mohammed A. Al Ghamdi3, Sultan H. Almotiri3

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 467-480, 2021, DOI:10.32604/cmc.2020.013121 - 30 October 2020

    Abstract Networks provide a significant function in everyday life, and cybersecurity therefore developed a critical field of study. The Intrusion detection system (IDS) becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network. Notwithstanding advancements of growth, current intrusion detection systems also experience dif- ficulties in enhancing detection precision, growing false alarm levels and identifying suspicious activities. In order to address above mentioned issues, several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches. Machine learning models will accurately identify the underlying variations… More >

  • Open Access

    ARTICLE

    Forecast the Influenza Pandemic Using Machine Learning

    Muhammad Adnan Khan1,*, Wajhe Ul Husnain Abidi1,2, Mohammed A. Al Ghamdi3, Sultan H. Almotiri3, Shazia Saqib1, Tahir Alyas1, Khalid Masood Khan1, Nasir Mahmood4

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 331-340, 2021, DOI:10.32604/cmc.2020.012148 - 30 October 2020

    Abstract Forecasting future outbreaks can help in minimizing their spread. Influenza is a disease primarily found in animals but transferred to humans through pigs. In 1918, influenza became a pandemic and spread rapidly all over the world becoming the cause behind killing one-third of the human population and killing one-fourth of the pig population. Afterwards, that influenza became a pandemic several times on a local and global levels. In 2009, influenza ‘A’ subtype H1N1 again took many human lives. The disease spread like in a pandemic quickly. This paper proposes a forecasting modeling system for the… More >

  • Open Access

    ARTICLE

    Prediction of COVID-19 Confirmed Cases Using Gradient Boosting Regression Method

    Abdu Gumaei1,2,*, Mabrook Al-Rakhami1, Mohamad Mahmoud Al Rahhal3, Fahad Raddah H. Albogamy3, Eslam Al Maghayreh3, Hussain AlSalman1

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 315-329, 2021, DOI:10.32604/cmc.2020.012045 - 30 October 2020

    Abstract The fast spread of coronavirus disease (COVID-19) caused by SARSCoV-2 has become a pandemic and a serious threat to the world. As of May 30, 2020, this disease had infected more than 6 million people globally, with hundreds of thousands of deaths. Therefore, there is an urgent need to predict confirmed cases so as to analyze the impact of COVID-19 and practice readiness in healthcare systems. This study uses gradient boosting regression (GBR) to build a trained model to predict the daily total confirmed cases of COVID-19. The GBR method can minimize the loss function More >

  • Open Access

    ARTICLE

    Enabling Smart Cities with Cognition Based Intelligent Route Decision in Vehicles Empowered with Deep Extreme Learning Machine

    Dildar Hussain1, Muhammad Adnan Khan2,*, Sagheer Abbas3, Rizwan Ali Naqvi4, Muhammad Faheem Mushtaq5, Abdur Rehman3, Afrozah Nadeem2

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 141-156, 2021, DOI:10.32604/cmc.2020.013458 - 30 October 2020

    Abstract The fast-paced growth of artificial intelligence provides unparalleled opportunities to improve the efficiency of various industries, including the transportation sector. The worldwide transport departments face many obstacles following the implementation and integration of different vehicle features. One of these tasks is to ensure that vehicles are autonomous, intelligent and able to grow their repository of information. Machine learning has recently been implemented in wireless networks, as a major artificial intelligence branch, to solve historically challenging problems through a data-driven approach. In this article, we discuss recent progress of applying machine learning into vehicle networks for… More >

Displaying 1521-1530 on page 153 of 1797. Per Page