Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (894)
  • Open Access

    ABSTRACT

    Accuracy and Computational Efficiency of the Finite Volume Method Combined with the Meshless Local Petrov-Galerkin in Comparison with the Finite Element Method in Elasto-static Problem

    M.R. Moosavi1, A. Khelil1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.5, No.4, pp. 211-238, 2008, DOI:10.3970/icces.2008.005.211

    Abstract In this paper, a combined formulation of the Finite Volume Method (FVM) and the Meshless Local Petrov-Galerkin (MLPG) is investigated to solve elasto-static problem. Accuracy and computational efficiency study between the combined formulation and the Finite Element Method (FEM) is presented. Some problems of beam under various loading and boundary conditions are analyzed by the proposed method, and the numerical results are compared with analytical solution and result of other numerical method which is obtained by well-known FEM software ABAQUS. The advantages of the FVM combined MLPG (FVMLPG) with respect to the FEM are illustrated. More >

  • Open Access

    ABSTRACT

    Experimental Study on CT Micro Mechanics Characteristics of Soft Rock Creep under Gravity Disturbance Loads

    FU Zhiliang1, GUO Hua2, GAO Yanfa3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.5, No.3, pp. 145-156, 2008, DOI:10.3970/icces.2008.005.145

    Abstract This paper is focused on the micro-damage evolution properties of gray green mudstone under impacting disturbance load conditions for the first time by using the real time CT testing technique. CT images and CT values for rock cross-sections under different impacting disturbance loading levels were obtained. The paper is also to describe process of rock creep damage under disturbance loads and to explore the mechanism of micro-damage. The results have shown that rock failure is easy to happen suddenly rock is in or close to limit strength neighborhood during the process of disturbance. This will More >

  • Open Access

    ARTICLE

    Comparative Computer Modeling of Carbon-Polymer Composites with Carbon or Graphite Microfibers or Carbon Nanotubes

    A.N. Guz1, J.J.Rushchitsky1, I.A.Guz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.3, pp. 139-156, 2008, DOI:10.3970/cmes.2008.026.139

    Abstract The basic approach is offered for problems of nanocomposites and their mechanical properties, which includes a short review of modern problems in nanomechanics of materials. The fibrous carbon-polymer composites with carbon or graphite microfibers or carbon nanotubes are especially discussed. The basic model of the linear or nonlinear elastically deforming micro- and nanocomposites is considered. Within the framework of this model, the comparative computer modeling is performed. The modeling permits to observe the features in prediction of values of basic mechanical constants. These results are utilized on next step of modeling -- studying the peculiarities More >

  • Open Access

    ARTICLE

    Shared Memory OpenMP Parallelization of Explicit MPM and Its Application to Hypervelocity Impact

    P. Huang1,2, X. Zhang1,3, S. Ma1, H.K. Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.38, No.2, pp. 119-148, 2008, DOI:10.3970/cmes.2008.038.119

    Abstract The material point method (MPM) is an extension of particle-in-cell method to solid mechanics. A parallel MPM code is developed using FORTRAN 95 and OpenMP in this study, which is designed primarily for solving impact dynamic problems. Two parallel methods, the array expansion method and the domain decomposition method, are presented to avoid data races in the nodal update stage. In the array expansion method, two-dimensional auxiliary arrays are created for nodal variables. After updating grid nodes in all threads, the auxiliary arrays are assembled to establish the global nodal array. In the domain decomposition… More >

  • Open Access

    ARTICLE

    Fluid Transport in Compacted Porous Talc Blocks

    Viveca Wallqvist1, Per M. Claesson2, Agne Swerin1, Patrick A. C. Gane3,4,3, Joachim Schoelkopf3

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.2, pp. 85-98, 2008, DOI:10.3970/fdmp.2008.004.085

    Abstract It has been shown that talc powder can be compacted into tablets with a preferred orientation of the platelets. The tablets can be obtained with different controlled porosity depending on pressing methods and applied pressure. The tablets can be obtained with or without additives, which may, in turn, be adsorbed. The orientation of the high aspect ratio platy talc, the surface chemistry imparted by the additives and the transported fluid influence the imbibition and permeation rates. Non-polar hexadecane displays a higher imbibition and permeability than water for all particulate orientations during short timescale absorption, likely… More >

  • Open Access

    ARTICLE

    An Analytical Model for Explosive Compaction of Powder to Cylindrical Billets through Axial Detonation

    B. Srivathsa1, N. Ramakrishnan2

    CMC-Computers, Materials & Continua, Vol.7, No.1, pp. 9-24, 2008, DOI:10.3970/cmc.2008.007.009

    Abstract An analytical model, describing an explosive compaction process performed axially on a powder assembly of cylindrical geometry, is discussed. The powder is encapsulated in a cylindrical metal container surrounded by an explosive pad, which is detonated parallel to the major axis of the compact. The pressure generated in the powder is a function of the nature and the thickness of the explosive material as well as the powder characteristics. The model is based on the principle of shock propagation in powder aggregate and, the detonation as well as the refraction wave characteristics of the explosives.… More >

  • Open Access

    ARTICLE

    Limit Strains Comparison during Tube and Sheet Hydroforming and Sheet Stamping Processes by Numerical Simulation

    C. Nikhare1, K. Narasimhan2

    CMC-Computers, Materials & Continua, Vol.7, No.1, pp. 1-8, 2008, DOI:10.3970/cmc.2008.007.001

    Abstract Hydroforming is a manufacturing process that uses a fluid medium to form a component by using high internal pressure. Tube and sheet hydroforming has gained increasing interest in the automotive and aerospace industries because of its many advantages such as part consolidation, good quality of the formed parts etc. The main advantage is that the uniform pressure can be transferred to every where at the same time. Forming limit is the limit of the component up to that extent it can be formed safely. While analyzing hydroforming process, it is often assumed that the limit… More >

  • Open Access

    ABSTRACT

    Comparison of Fabrication Cost of Composite Bipolar Plates Made by Compression Molding and by Machining

    H.S. Lee1, W.S. Chu1, Y.C. Kang1, H.J. Kang1, S.H. Ahn2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.3, pp. 195-200, 2007, DOI:10.3970/icces.2007.004.195

    Abstract The fuel cell is one of promising environment-friendly energy sources for the next generation. The bipolar plate is a major component of the Proton Exchange Membrane (PEM) fuel cell stack, and it takes a large portion of stack volume, weight and cost. In this study, as alternative materials for bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding and by machining. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity. Flow channels were fabricated by compression molding applying design of experiments (DOE) in order More >

  • Open Access

    ABSTRACT

    Weight And Reliability Optimization Of A Helicopter Composite Armor Using Dynamic Programming

    V.C. Santos1, P.S. Lopes1, R. Gärtner2, A.B. Jorge1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.2, pp. 53-58, 2007, DOI:10.3970/icces.2007.004.053

    Abstract This work presents an approach for weight and reliability optimization of aeronautical armors. Military and police helicopters are usually exposed to highly risky situations, with a high probability for these aircrafts to be hit by projectiles. In this context, floor aircraft armor can be used to protect the crews' lives. However, the armoring of an aircraft causes an increase in weight. If this extra weight is poorly arranged, the changes in aircraft centroid position may even destabilize the aircraft. Thus, it is essential to design an armor not only to protect the aircraft, but also… More >

  • Open Access

    ABSTRACT

    A comparison of the RBF-based meshfree boundary knot and the boundary particle methods

    W. Chen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.4, pp. 177-188, 2007, DOI:10.3970/icces.2007.003.177

    Abstract This paper is concerned with the two new boundary-type radial basis function collocation schemes, boundary knot method (BKM) and boundary particle method (BPM). The BKM is developed based on the dual reciprocity theorem, while the BKM employs the multiple reciprocity technique. Unlike the method of fundamental solution, the two methods use the non-singular general solution instead of the singular fundamental solution to circumvent the controversial artificial boundary outside the physical domain. Compared with the boundary element method, both BKM and BPM are meshfree, super-convergent, integration-free, symmetric, and mathematically simple collocation techniques for general PDEs. In More >

Displaying 851-860 on page 86 of 894. Per Page