Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (100)
  • Open Access

    ABSTRACT

    Associations between Carotid Bifurcation Geometry and Atherosclerotic Plaque Vulnerability: A Chinese Atherosclerosis Risk Evaluation II Study

    Peirong Jiang1, Zhensen Chen2, Daniel S. Hippe2, Hiroko Watase3, Bin Sun1, Ruolan Lin1, Zheting Yang1, Yunjing Xue1,*, Xihai Zhao4,*, Chun Yuan2,4

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 34-35, 2019, DOI:10.32604/mcb.2019.07394

    Abstract This article has no abstract. More >

  • Open Access

    ABSTRACT

    Comparison of Aortic Flow Patterns in Patients with and without Aortic Valve Disease: Hemodynamic Simulation Based on PC-MRI and CTA Data

    Lijian Xu1,2, Lekang Yin3, Fuyou Liang1,2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 71-72, 2019, DOI:10.32604/mcb.2019.05741

    Abstract Recent studies have revealed that aortic valve diseases are associated with the increased incidence of the aortopathy development. However, the influence of aortic valve diseases on aortic hemodynamics remains unclear. The purpose of this study was therefore to investigate the hemodynamic differences in patients with and without aortic valve disease through patient-specific simulations performed on two aorta models (BAV with severe stenosis vs. normal tricuspid aortic valve (TAV)). Realistic geometries and boundary conditions were obtained from computed tomography angiography (CTA) and phase-contrast magnetic resonance imaging (PC-MRI) measurements, respectively. In addition, 4D-MRI were performed to validate the numerical methods used to… More >

  • Open Access

    ARTICLE

    Magnetic Resonance Image-Based Modeling for Neurosurgical Interventions

    Yongqiang Li1,#, Changxin Lai1,#, Chengchen Zhang2, Alexa Singer1, Suhao Qiu1, Boming Sun2, Michael S. Sacks3, Yuan Feng1,*

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 245-251, 2019, DOI:10.32604/mcb.2019.07441

    Abstract Surgeries such as implantation of deep brain stimulation devices require accurate placement of devices within the brain. Because placement affects performance, image guidance and robotic assistance techniques have been widely adopted. These methods require accurate prediction of brain deformation during and following implantation. In this study, a magnetic resonance (MR) image-based finite element (FE) model was proposed by using a coupled Eulerian-Lagrangian method. Anatomical accuracy was achieved by mapping image voxels directly to the volumetric mesh space. The potential utility was demonstrated by evaluating the effect of different surgical approaches on the deformation of the corpus callosum (CC) region. The… More >

  • Open Access

    ARTICLE

    New Concept in Stroke Diagnosis

    Ali. E. Dabiri1,2,*, Richard Leigh3, Ghassan S. Kassab1

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 225-233, 2019, DOI:10.32604/mcb.2019.07962

    Abstract Stroke is a life-threatening event that is expected to more than double over the next 40 years. Approximately 85% of strokes are ischemic in nature and result from thromboembolic occlusion of a major cerebral artery or its branches. One of the diagnostic methods for detection of the cerebral ischemia is the gadolinium-enhanced MRI imaging. It is mainly used in patients to detect brain tissue damaged by an ischemic stroke and brain hemorrhage. These techniques are expensive, require sophisticated machines and are time consuming. A recent study in acute stroke patients showed gadolinium leakage into ocular structures (GLOS) during MRI imaging… More >

  • Open Access

    ABSTRACT

    Fluid-Structure Interaction Human Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models Based on Patient-Tracking In Vivo MRI Data

    Dalin Tang1, Chun Yang2, Satya Atluri3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.3, pp. 67-68, 2011, DOI:10.3970/icces.2011.018.067

    Abstract Cardiovascular disease is the leading cause of death worldwide. Many victims of the disease died suddenly without prior symptoms. It is a great challenge for clinicians and researchers to develop screening techniques and assessment methodologies to identify those patients for early treatment and prevention of the fatal clinical event. Considerable effort has been devoted investigating mechanisms governing atherosclerotic plaque progression and rupture [Friedman, Bargeron, Deters, Hutchins and Mark (1987); Friedman and Giddens (2005); Giddens, Zarins, Glagov, S. (1993); Ku, Giddens, Zarins and Glagov (1985); Gibson et al. (1993); Liu and Tang (2010); Stone et al. (2003); Yang, Tang, Atluri et… More >

  • Open Access

    ABSTRACT

    A Meshless Regularized Integral Equation Method (MRIEM) for Laplace Equation in Arbitrary Interior or Exterior Plane Domains

    Chein-Shan Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.2, pp. 57-68, 2007, DOI:10.3970/icces.2007.003.057

    Abstract A new method is developed to solve the interior and exterior Dirichlet problems for the two-dimensional Laplace equation, namely the meshless regularized integral equation method (MRIEM), which consists of three parts: Fourier series expansion, the second kind Fredholm integral equation and an analytically regularized solution of the unknown boundary condition on an artificial circle. We find that the new method is powerful even for the problem with very complex boundary shape and with boundary noise. More >

  • Open Access

    ARTICLE

    A Novel Image Categorization Strategy Based on Salp Swarm Algorithm to Enhance Efficiency of MRI Images

    Mohammad Behrouzian Nejad1, Mohammad Ebrahim Shiri Ahmadabadi1, 2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.1, pp. 185-205, 2019, DOI:10.32604/cmes.2019.01838

    Abstract The main target of this paper is presentation of an efficient method for MRI images classification so that it can be used to diagnose patients and non-patients. Image classification is one of the prominent subset topics of machine learning and data mining that the most important image technique is the auto-categorization of images. MRI images with high resolution and appropriate accuracy allow physicians to decide on the diagnosis of various diseases and treat them. The auto categorization of MRI images toward diagnosing brain diseases has been being used to accurately diagnose hospitals, clinics, physicians and medical research centers. In this… More >

  • Open Access

    ARTICLE

    Stress-Based Plaque Vulnerability Index and Assessment for Carotid Atherosclerotic Plaques Using Patient-Specific Vessel Material Properties

    Qingyu Wang1, Dalin Tang1,2,*, Gador Canton3, Zheyang Wu2, Thomas S. Hatsukami4, Kristen L. Billiar5, Chun Yuan6

    Molecular & Cellular Biomechanics, Vol.15, No.4, pp. 189-201, 2018, DOI:10.32604/mcb.2018.04572

    Abstract Cardiovascular diseases are closely linked to atherosclerotic plaque development and rupture. Assessment of plaque vulnerability is of fundamental significance to cardiovascular research and disease diagnosis, prevention, treatment and management. Magnetic resonance image (MRI) data of carotid atherosclerotic plaques from 8 patients (5 male, 3 female; age: 62-83, mean=71) were acquired at the University of Washington (UW), Seattle by the Vascular Imaging Laboratory (VIL) with written informed consent obtained. Patient-specific vessel material properties were quantified using Cine MRI data for modeling use. 3D thin-layer models were used to obtain plaque stress and strain for plaque assessment. A stress-based plaque vulnerability index… More >

  • Open Access

    ARTICLE

    Comparison of Right Ventricle Morphological and Mechanical Characteristics for Healthy and Patients with Tetralogy of Fallot: An In Vivo MRI-Based Modeling Study

    Dalin Tang1,*,2, Heng Zuo2,*, Chun Yang2, Zheyang Wu2, Xueying Huang3, Rahul H. Rathod4, Alexander Tang4, Kristen L. Billiar5, Tal Geva4

    Molecular & Cellular Biomechanics, Vol.14, No.3, pp. 137-151, 2017, DOI:10.3970/mcb.2017.014.137

    Abstract Patients with repaired tetralogy of Fallot (TOF) account for the majority of cases with late onset right ventricle failure. Comparing TOF patients with healthy people may provide information to address this challenge. Cardiac magnetic resonance (CMR) data were obtained from 16 TOF patients (patient group, PG) and 6 healthy volunteers (healthy group, HG). At begin-of-ejection, better patient group (n=5, BPG) stress was very close to HG stress (54.7±38.4 kPa vs. 51.2±55.7 kPa, p=0.6889) while worse patient group (n=11, WPG) stress was 84% higher than HG stress (p=0.0418). Stress may be used as an indicator to differentiate BPG patients from WPG… More >

  • Open Access

    ARTICLE

    Patient-Specific Artery Shrinkage and 3D Zero-Stress State in Multi-Component 3D FSI Models for Carotid Atherosclerotic Plaques Based on In Vivo MRI Data

    Xueying Huang*, Chun Yang, Chun Yuan, Fei Liu, Gador Canton, Jie Zheng§, Pamela K. Woodard§, Gregorio A. Sicard, Dalin Tang||

    Molecular & Cellular Biomechanics, Vol.6, No.2, pp. 121-134, 2009, DOI:10.3970/mcb.2009.006.121

    Abstract Image-based computational models for atherosclerotic plaques have been developed to perform mechanical analysis to quantify critical flow and stress/strain conditions related to plaque rupture which often leads directly to heart attack or stroke. An important modeling issue is how to determine zero stress state from in vivo plaque geometries. This paper presents a method to quantify human carotid artery axial and inner circumferential shrinkages by using patient-specific ex vivo and in vivo MRI images. A shrink-stretch process based on patient-specific in vivo plaque morphology and shrinkage data was introduced to shrink the in vivo geometry first to find the zero-stress… More >

Displaying 81-90 on page 9 of 100. Per Page