Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,026)
  • Open Access

    ARTICLE

    A Scalable Approach for Fraud Detection in Online E-Commerce Transactions with Big Data Analytics

    Hangjun Zhou1,2,*, Guang Sun1,3, Sha Fu1, Wangdong Jiang1, Juan Xue1

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 179-192, 2019, DOI:10.32604/cmc.2019.05214

    Abstract With the rapid development of mobile Internet and finance technology, online e-commerce transactions have been increasing and expanding very fast, which globally brings a lot of convenience and availability to our life, but meanwhile, chances of committing frauds also come in all shapes and sizes. Moreover, fraud detection in online e-commerce transactions is not totally the same to that in the existing areas due to the massive amounts of data generated in e-commerce, which makes the fraudulent transactions more covertly scattered with genuine transactions than before. In this article, a novel scalable and comprehensive approach More >

  • Open Access

    ARTICLE

    A Hybrid Model for Anomalies Detection in AMI System Combining K-means Clustering and Deep Neural Network

    Assia Maamar1,*, Khelifa Benahmed2

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 15-39, 2019, DOI:10.32604/cmc.2019.06497

    Abstract Recently, the radical digital transformation has deeply affected the traditional electricity grid and transformed it into an intelligent network (smart grid). This mutation is based on the progressive development of advanced technologies: advanced metering infrastructure (AMI) and smart meter which play a crucial role in the development of smart grid. AMI technologies have a promising potential in terms of improvement in energy efficiency, better demand management, and reduction in electricity costs. However the possibility of hacking smart meters and electricity theft is still among the most significant challenges facing electricity companies. In this regard, we… More >

  • Open Access

    ARTICLE

    A Neural Network-Based Trust Management System for Edge Devices in Peer-to-Peer Networks

    Alanoud Alhussain1, Heba Kurdi1,*, Lina Altoaimy2

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 805-815, 2019, DOI:10.32604/cmc.2019.05848

    Abstract Edge devices in Internet of Things (IoT) applications can form peers to communicate in peer-to-peer (P2P) networks over P2P protocols. Using P2P networks ensures scalability and removes the need for centralized management. However, due to the open nature of P2P networks, they often suffer from the existence of malicious peers, especially malicious peers that unite in groups to raise each other's ratings. This compromises users' safety and makes them lose their confidence about the files or services they are receiving. To address these challenges, we propose a neural network-based algorithm, which uses the advantages of More >

  • Open Access

    ARTICLE

    A Data Download Method from RSUs Using Fog Computing in Connected Vehicles

    Dae-Young Kim1, Seokhoon Kim2,*

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 375-387, 2019, DOI:10.32604/cmc.2019.06077

    Abstract Communication is important for providing intelligent services in connected vehicles. Vehicles must be able to communicate with different places and exchange information while driving. For service operation, connected vehicles frequently attempt to download large amounts of data. They can request data downloading to a road side unit (RSU), which provides infrastructure for connected vehicles. The RSU is a data bottleneck in a transportation system because data traffic is concentrated on the RSU. Therefore, it is not appropriate for a connected vehicle to always attempt a high speed download from the RSU. If the mobile network… More >

  • Open Access

    ARTICLE

    Computational Machine Learning Representation for the Flexoelectricity Effect in Truncated Pyramid Structures

    Khader M. Hamdia2, Hamid Ghasemi3, Xiaoying Zhuang4,5, Naif Alajlan1, Timon Rabczuk1,2,*

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 79-87, 2019, DOI:10.32604/cmc.2019.05882

    Abstract In this study, machine learning representation is introduced to evaluate the flexoelectricity effect in truncated pyramid nanostructure under compression. A Non-Uniform Rational B-spline (NURBS) based IGA formulation is employed to model the flexoelectricity. We investigate 2D system with an isotropic linear elastic material under plane strain conditions discretized by 45×30 grid of B-spline elements. Six input parameters are selected to construct a deep neural network (DNN) model. They are the Young's modulus, two dielectric permittivity constants, the longitudinal and transversal flexoelectric coefficients and the order of the shape function. The outputs of interest are the More >

  • Open Access

    ARTICLE

    The Prediction of Self-Healing Capacity of Bacteria-Based Concrete Using Machine Learning Approaches

    Xiaoying Zhuang1,2,*, Shuai Zhou3,4

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 57-77, 2019, DOI:10.32604/cmc.2019.04589

    Abstract Advances in machine learning (ML) methods are important in industrial engineering and attract great attention in recent years. However, a comprehensive comparative study of the most advanced ML algorithms is lacking. Six integrated ML approaches for the crack repairing capacity of the bacteria-based self-healing concrete are proposed and compared. Six ML algorithms, including the Support Vector Regression (SVR), Decision Tree Regression (DTR), Gradient Boosting Regression (GBR), Artificial Neural Network (ANN), Bayesian Ridge Regression (BRR) and Kernel Ridge Regression (KRR), are adopted for the relationship modeling to predict crack closure percentage (CCP). Particle Swarm Optimization (PSO) More >

  • Open Access

    ARTICLE

    Region-Aware Trace Signal Selection Using Machine Learning Technique for Silicon Validation and Debug

    R. Agalya1, R. Muthaiah2,*, D. Muralidharan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 25-43, 2019, DOI:10.32604/cmes.2019.05616

    Abstract In today’s modern design technology, post-silicon validation is an expensive and composite task. The major challenge involved in this method is that it has limited observability and controllability of internal signals. There will be an issue during execution how to address the useful set of signals and store it in the on-chip trace buffer. The existing approaches are restricted to particular debug set-up where all the components have equivalent prominence at all the time. Practically, the verification engineers will emphasis only on useful functional regions or components. Due to some constraints like clock gating, some… More >

  • Open Access

    ARTICLE

    An Intrusion Detection Algorithm Based on Feature Graph

    Xiang Yu1, Zhihong Tian2, Jing Qiu2,*, Shen Su2,*, Xiaoran Yan3

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 255-274, 2019, DOI:10.32604/cmc.2019.05821

    Abstract With the development of Information technology and the popularization of Internet, whenever and wherever possible, people can connect to the Internet optionally. Meanwhile, the security of network traffic is threatened by various of online malicious behaviors. The aim of an intrusion detection system (IDS) is to detect the network behaviors which are diverse and malicious. Since a conventional firewall cannot detect most of the malicious behaviors, such as malicious network traffic or computer abuse, some advanced learning methods are introduced and integrated with intrusion detection approaches in order to improve the performance of detection approaches.… More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection Based on Machine Learning

    Yong Fang1, Yunyun Zhang2, Cheng Huang1,*

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 185-195, 2019, DOI:10.32604/cmc.2019.06144

    Abstract In recent years, the rapid development of e-commerce exposes great vulnerabilities in online transactions for fraudsters to exploit. Credit card transactions take a salient role in nowadays’ online transactions for its obvious advantages including discounts and earning credit card points. So credit card fraudulence has become a target of concern. In order to deal with the situation, credit card fraud detection based on machine learning is been studied recently. Yet, it is difficult to detect fraudulent transactions due to data imbalance (normal and fraudulent transactions), for which Smote algorithm is proposed in order to resolve… More >

  • Open Access

    ARTICLE

    Failure Prediction, Lead Time Estimation and Health Degree Assessment for Hard Disk Drives Using Voting Based Decision Trees

    Kamaljit Kaur1, *, Kuljit Kaur2

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 913-946, 2019, DOI:10.32604/cmc.2019.07675

    Abstract Hard Disk drives (HDDs) are an essential component of cloud computing and big data, responsible for storing humongous volumes of collected data. However, HDD failures pose a huge challenge to big data servers and cloud service providers. Every year, about 10% disk drives used in servers crash at least twice, lead to data loss, recovery cost and lower reliability. Recently, the researchers have used SMART parameters to develop various prediction techniques, however, these methods need to be improved for reliability and real-world usage due to the following factors: they lack the ability to consider the More >

Displaying 1001-1010 on page 101 of 1026. Per Page