Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,103)
  • Open Access

    ARTICLE

    A Comparative Study of Bayes Classifiers for Blade Fault Diagnosis in Wind Turbines through Vibration Signals

    A. Joshuva1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.11, No.1, pp. 69-90, 2017, DOI:10.3970/sdhm.2017.012.069

    Abstract Renewable energy sources are considered much in energy fields because of the contemporary energy calamities. Among the important alternatives being considered, wind energy is a durable competitor because of its dependability due to the development of the innovations, comparative cost effectiveness and great framework. To yield wind energy more proficiently, the structure of wind turbines has turned out to be substantially bigger, creating conservation and renovation works troublesome. Due to various ecological conditions, wind turbine blades are subjected to vibration and it leads to failure. If the failure is not diagnosed early, it will lead… More >

  • Open Access

    ARTICLE

    Brake Fault Diagnosis Through Machine Learning Approaches – A Review

    Alamelu Manghai T.M.1, Jegadeeshwaran R2, Sugumaran V.3

    Structural Durability & Health Monitoring, Vol.11, No.1, pp. 43-67, 2017, DOI:10.3970/sdhm.2017.012.043

    Abstract Diagnosis is the recognition of the nature and cause of a certain phenomenon. It is generally used to determine cause and effect of a problem. Machine fault diagnosis is a field of finding faults arising in machines. To identify the most probable faults leading to failure, many methods are used for data collection, including vibration monitoring, thermal imaging, oil particle analysis, etc. Then these data are processed using methods like spectral analysis, wavelet analysis, wavelet transform, short-term Fourier transform, high-resolution spectral analysis, waveform analysis, etc., The results of this analysis are used in a root More >

  • Open Access

    ARTICLE

    A Machine Learning Approach for MRI Brain Tumor Classification

    Ravikumar Gurusamy1, Dr Vijayan Subramaniam2

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 91-108, 2017, DOI:10.3970/cmc.2017.053.091

    Abstract A new method for the denoising, extraction and tumor detection on MRI images is presented in this paper. MRI images help physicians study and diagnose diseases or tumors present in the brain. This work is focused towards helping the radiologist and physician to have a second opinion on the diagnosis. The ambiguity of Magnetic Resonance (MR) image features is solved in a simpler manner. The MRI image acquired from the machine is subjected to analysis in the work. The real-time data is used for the analysis. Basic preprocessing is performed using various filters for noise More >

Displaying 1101-1110 on page 111 of 1103. Per Page