Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (93)
  • Open Access

    ARTICLE

    A Mathematical Model of Cell Reorientation in Response to Substrate Stretching

    Konstantinos A. Lazopoulos1, Dimitrije Stamenović2

    Molecular & Cellular Biomechanics, Vol.3, No.1, pp. 43-48, 2006, DOI:10.3970/mcb.2006.003.043

    Abstract It is well documented that in response to substrate stretching adhering cells alter their orientation. Generally, the cells reorient away from the direction of the maximum substrate strain, depending upon the magnitude of the substrate strain and the state of cell contractility. Theoretical models from the literature can describe only some aspects of this phenomenon. In the present study, we developed a more comprehensive mathematical model of cell reorientation than the current models. Using the framework of theory of non-linear elasticity, we found that the problem of cell reorientation was a stability problem, with the More >

  • Open Access

    ARTICLE

    An Improved Mathematical Approach for Determination of Molecular Kinetics in Living Cells with FRAP

    Tanmay Lele1,1, Philmo Oh1,1, Jeffrey A. Nickerson1,1,2,2, Donald E. Ingber1,1,3,3

    Molecular & Cellular Biomechanics, Vol.1, No.3, pp. 181-190, 2004, DOI:10.3970/mcb.2004.001.181

    Abstract The estimation of binding constants and diffusion coefficients of molecules that associate with insoluble molecular scaffolds inside living cells and nuclei has been facilitated by the use of Fluorescence Recovery after Photobleaching (FRAP) in conjunction with mathematical modeling. A critical feature unique to FRAP experiments that has been overlooked by past mathematical treatments is the existence of an `equilibrium constraint': local dynamic equilibrium is not disturbed because photobleaching does not functionally destroy molecules, and hence binding-unbinding proceeds at equilibrium rates. Here we describe an improved mathematical formulation under the equilibrium constraint which provides a more… More >

  • Open Access

    ARTICLE

    Computer Modeling and Simulation of Stationary-Vane, Rolling Piston Refrigeration Compressors

    G. Prater, Jr.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.3, pp. 299-312, 2002, DOI:10.3970/cmes.2002.003.299

    Abstract A vapor compressor's performance is affected by pressure and mass flow fluctuations resulting from acoustic effects in the suction and discharge manifolds. Through proper geometric design of the manifolds, these pulsations can be modified to increase efficiency and reduce noise. This paper documents the development of a computer simulation program used to tune stationary-vane refrigeration compressors. The program models the mechanical, fluid, thermodynamic, kinematic, and acoustical processes occurring in such compressors, and calculates suction and discharge chamber pressures, mass flow rates, valve displacements, and acoustic input and transfer impedances. Experimental acoustic pressure measurements from a More >

Displaying 91-100 on page 10 of 93. Per Page