Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (718)
  • Open Access

    ARTICLE

    Research on Instability Mechanism and Type of Ore Pillar based on the Fold Catastrophe Theory

    Zhengzheng Cao1, Feng Du2,3,4, Zhenhua Li2, Qinting Wang1, Ping Xu1, Haixiao Lin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.3, pp. 275-293, 2017, DOI:10.3970/cmes.2017.113.287

    Abstract The stability of ore pillar in mine is essential for the safe and efficient mining. Based on the energy evolvement rule in ore pillar and roadway roof system, the roadway roof and ore pillar are treated as energy release body and energy dissipation body, respectively. Therefore, the double-block mechanical model is established with energy dissipation body and energy release body, and the energy mechanism of ore pillar instability is obtained, based on the fold catastrophe mathematical theory. The research result indicates that the dynamic instability of ore pillar is a physical instability problem caused by… More >

  • Open Access

    ARTICLE

    Control Mechanism of Surface Subsidence and Overburden Movement in Backfilling Mining based on Laminated Plate Theory

    Zhengzheng Cao1, Feng Du2,3,4, Ping Xu1, Haixiao Lin1, Yi Xue3, Yuejin Zhou3

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 175-186, 2017, DOI:10.3970/cmc.2017.053.187

    Abstract The backfilling mining technology is a type of high-efficiency coal mining technology that is used to address the environmental issues caused by the caving mining technology. In this paper, the mechanical model of symmetrical laminated plate representing the overburden movement caused by the backfilling mining technology is established, and the governing differential equation of the motion of the overburden is derived. The boundary conditions of the mechanical model are put forward, and the analytical solution of the overburden movement and surface subsidence is obtained. The numerical model of the overburden movement and surface subsidence, under… More >

  • Open Access

    ARTICLE

    ANALYSIS OF COMBUSTION MECHANISM AND COMBUSTION OPTIMIZATION OF A 300MW PULVERIZED COAL BOILER

    Xiaoqian Maa , Mo Yanga,*, Yuwen Zhangb

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.36

    Abstract Combustion mechanism of a 300 MW pulverized coal boiler is analyzed and the optimization of the performance of the boiler is carried out. The flow field, temperature field, devolatilization, char combustion and CO generation in the boiler furnace under actual condition is obtained by using Fluent. Three methods to improve the efficiency of boiler combustion are proposed based on the pulverized coal combustion mechanism; their feasibilities are verified through numerical simulation and analysis. The three proposed methods to increase the combustion efficiency may give theoretical reference for air arrangement and combustion optimization of the same More >

  • Open Access

    ARTICLE

    Time course and mechanism of brain oxidative stress and damage for redox active and inactive transition metals overload

    Nidia FERRAROTTI1, Rosario MUSACCO-SEBIO2, Christian SAPORITO-MAGRIÑÁ2, Juan Manuel ACOSTA2, Marisa REPETTO2 *

    BIOCELL, Vol.40, No.1, pp. 19-22, 2016, DOI:10.32604/biocell.2016.40.019

    Abstract The objective of this work was to study the in vivo time course of biochemical processes of oxidative damage in the brain of Sprague-Dawley rats that received an acute overload of the redox active metals iron (Fe) and copper (Cu), and the redox inactive cobalt (Co) and nickel (Ni). Oxidative stress indicators (phospholipid and protein oxidation), glutathione (GSH), antioxidant enzymes and NADPH oxidase activities, and the plasma inflammatory cytokine (IL-6) were measured. The results showed that in brain oxidative mechanisms for both sets of metal are different, however in both cases are irreversible. The mechanism… More >

  • Open Access

    REVIEW

    Self-assembly Mechanisms in Plant Cell Wall Components

    Yogesh K. Murugesan1, Damiano Pasini2, Alejandro D. Rey1,*

    Journal of Renewable Materials, Vol.3, No.1, pp. 56-72, 2015, DOI:10.7569/JRM.2014.634124

    Abstract This review on self-assembly in biological fi brous composites presents theory and simulation to elucidate the principles and mechanisms that govern the thermodynamics, material science, and rheology of biological anisotropic soft matter that are involved in the growth/self-assembly/material processing of these materials. Plant cell wall, a multi-layered biological fi brous composite, is presented as a model biological system to investigate self-assembly mechanisms in nature’s material synthesis. In order to demonstrate the universality of the presented models and the mechanisms investigated, references to other biological/ biomimetic systems are made when applicable. The integration of soft matter More >

  • Open Access

    REVIEW

    Overview: Mechanism and Control of a Prosthetic Arm

    Tushar Kulkarni1,2, Rashmi Uddanwadiker1

    Molecular & Cellular Biomechanics, Vol.12, No.3, pp. 147-195, 2015, DOI:10.3970/mcb.2015.012.147

    Abstract Continuous growth in industrialization and lack of awareness in safety parameters the cases of amputations are growing. The search of safer, simpler and automated prosthetic arms for managing upper limbs is expected. Continuous efforts have been made to design and develop prosthetic arms ranging from simple harness actuated to automated mechanisms with various control options. However due the cost constraints, the automated prosthetic arms are still out of the reach of needy people. Recent data have shown that there is a wide scope to develop a low cost and light weight upper limb prosthesis. This… More >

  • Open Access

    ARTICLE

    Numerical Simulation of An Experienced Farmer Lifting Tubers of Cassava for Designing A Bionic Harvester

    Wang Yang1,2, Juanjuan Li1, Jian Yang1,3, Lin Wei4

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.6, pp. 471-491, 2015, DOI:10.3970/cmes.2015.104.471

    Abstract Harvesting is the most difficult and costly operation in cassava production. Currently, most cassava harvest still depends on manual tools. Effective mechanized harvesters are necessary to improve harvesting quality and reduce production cost. Therefore, it is very important to figure out key information for designing an effective tuber lifting system used in bionic “dig-pull” harvesters. A numerical simulation model of human-stem-tuber-soil system was developed to carry out numerical simulation of manually pulling tuber. Coupling algorithm of Lagrange and smoothed particle hydrodynamics (SPH) was used in the model. Lifting mechanism of experienced farmer was studied at… More >

  • Open Access

    ARTICLE

    On the Formation Mechanism and Characteristics of High-Pressure Percussion Pulsed Water Jets

    Yong Liu1, Jianping Wei2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 221-240, 2015, DOI:10.3970/fdmp.2015.011.221

    Abstract Although the socalled percussion-pulsed-water jet technique is currently recognized as an effective means for breaking hard rocks, it can’t be extensively employed due to insufficient systematic research on the related flow-field structure. Considered as one of the rock breaking technologies with the highest potential of development and application, this method is characterized by water hammer effects, a high-frequency impact pressure and high-speed side flows. The typical (impact and extrusion) pistons used for this technique collide several times to form the multi-pulsed jet. Here we analyze these features through a combined experimental-numerical investigation. The number of… More >

  • Open Access

    ARTICLE

    EFFECT OF WALL THERMAL CONDUCTIVITY ON MICRO-SCALE COMBUSTION CHARACTERISTICS OF HYDROGEN-AIR MIXTURES WITH DETAILED CHEMICAL KINETIC MECHANISMS IN Pt/γ-Al2O3 CATALYTIC MICRO-COMBUSTORS

    Junjie Chen*, Longfei Yan, Wenya Song

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-6, 2014, DOI:10.5098/hmt.5.16

    Abstract To understand the effect of different thermal conductivities on catalytic combustion characteristics, effect of thermal conductivity on micro-combustion characteristics of hydrogen-air mixtures in Pt/γ-Al2O3 catalytic micro-combustors were investigated numerically with detailed chemical kinetics mechanisms. Three kinds of wall materials (100, 7.5, and 0.5 W/m·K) were selected to investigate the effect of heat conduction on the catalytic combustion. The simulation results indicate that the catalytic reaction restrains the gas phase reaction in Pt/γ-Al2O3 catalytic micro-combustors. The gas phase reaction restrained by Pt/γ-Al2O3 catalysts is sensitive to thermal boundary condition at the wall. For most conditions, the gas phase More >

  • Open Access

    Anisometry Anterior Cruciate Ligament Sport Injury Mechanism Study: A Finite Element Model with Optimization Method

    Na Li*, Wei Wang*, Bin Ye*, Song Wu†,‡

    Molecular & Cellular Biomechanics, Vol.11, No.2, pp. 87-100, 2014, DOI:10.3970/mcb.2014.011.087

    Abstract ACL damage is one the most frequent causes of knee injuries and thus has long been the focus of research in biomechanics and sports medicine. Due to the anisometric geometry and functional complexity of the ACL in the knee joint, it is usually difficult to experimentally study the biomechanics of ACLs. Anatomically ACL geometry was obtained from both MR images and anatomical observations. The optimal material parameters of the ACL were obtained by using an optimization-based material identification method that minimized the differences between experimental results from ACL specimens and FE simulations. The optimal FE… More >

Displaying 661-670 on page 67 of 718. Per Page