Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access

    ARTICLE

    Effects of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on growth and reactive oxygen metabolism of tomato fruits under low saline conditions

    WEI ZHOU, MENGMENG ZHANG, KEZHANG TAO, XIANCAN ZHU*

    BIOCELL, Vol.46, No.12, pp. 2575-2582, 2022, DOI:10.32604/biocell.2022.021910 - 10 August 2022

    Abstract Land salinization is a major form of land degradation, which is not conducive to the growth and quality of fruits and vegetables. Plant salt tolerance can be enhanced by arbuscular mycorrhizal fungi (AMF) or plant growth-promoting rhizobacteria (PGPR). This study examined the effects of inoculation with PGPR singly or in combination with AMF, on the growth and quality of tomato fruits under low saline conditions. Tomatoes were cultivated in a greenhouse with sterilized soil, inoculated with PGPR, AMF, or co-inoculated with PGPR and AMF, and NaCl solution (1%) was added to the soil. The results… More >

  • Open Access

    ARTICLE

    Effects of Drought Stress on Key Enzymes of Carbon Metabolism, Photosynthetic Characteristics and Agronomic Traits of Soybean at the Flowering Stage under Different Soil Substrates

    Shuang Song1, Xiaomei Li2, Xin Wang1, Qi Zhou1, Yongping Li1, Xiaojing Wang1, Shoukun Dong1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.11, pp. 2475-2490, 2022, DOI:10.32604/phyton.2022.021090 - 12 July 2022

    Abstract Soybean is an important legume food crop, and its seeds are rich in nutrients, providing humans and animals with edible oil and protein feed. However, soybean is sensitive to water requirements, and drought is an important factor limiting soybean yield and quality. This study used Heinong 84 (drought resistant variety) and Hefeng 46 (intermediate variety) as tested varieties planted in chernozem, albic, and black soils. The effects of drought stress on the activities of key enzymes in carbon metabolism and photosynthetic characteristics of soybean were studied during the flowering stage, most sensitive to water. (1)… More >

  • Open Access

    ARTICLE

    Uridine dynamic administration affects the circadian variation of bile acid metabolism in high-fat-diet-fed mice

    TIANTIAN ZHOU1,3,#, YUMEI ZHANG1,2,#, JUAN ZHANG1,2, CHUNYAN XIE2, ZHENYA ZHAI1,2, XIN WU1,2,3,*

    BIOCELL, Vol.46, No.11, pp. 2433-2442, 2022, DOI:10.32604/biocell.2022.021290 - 07 July 2022

    Abstract High-fat diet (HFD) is demonstrated to disturb the bile acid metabolism. The rhythm of bile acid metabolism can also be affected by uridine, whose metabolism exhibits a daily rhythm. However, the mechanism of dynamic uridine administration affecting bile acid during HFD remains unclear. In this study, C57BL/6J mice were fed HFD (the control group; CON) or HFD with oral administration of uridine in the daytime (DUR) and nighttime (NUR) to investigate the mechanism of the effect of uridine on the bile acid. This study showed that the mRNA expression of uridine transporters and circadian clock… More >

  • Open Access

    VIEWPOINT

    Ready to migrate? Reading cellular signs of migration in an epithelial to mesenchymal transition model

    TAMARA FERNÁNDEZ-CALERO1,2,3,#, IGNACIO LÓPEZ1,#, MARCOS DAVYT1, CORA CHALAR1, RICARDO EHRLICH1,4, MÓNICA MARÍN1,*

    BIOCELL, Vol.46, No.11, pp. 2353-2356, 2022, DOI:10.32604/biocell.2022.020966 - 07 July 2022

    Abstract The epithelial to mesenchymal transition (EMT) is a cellular program that drives de-differentiation of cells in both physiological and pathological processes. One of the characteristics of cells describing an EMT is the (re)acquisition of a motility capacity that allows them to migrate through the original tissue as well as to other sites in the organism. The molecular mechanisms that control the EMT are rapidly emerging and here we add to the idea that the adaptation required for cells to commit to the EMT includes adjustments of the translation machinery and metabolic pathways to cope with More >

  • Open Access

    ARTICLE

    Comprehensive analysis reveals an arachidonic acid metabolism-related gene signature in patients with pancreatic ductal adenocarcinoma

    HUILI ZHU1, LINA XIAO1, XIA YIN1, SHIBING XIANG1, CHUNHUI WANG2,*

    BIOCELL, Vol.46, No.10, pp. 2241-2256, 2022, DOI:10.32604/biocell.2022.020389 - 13 June 2022

    Abstract Pancreatic ductal adenocarcinoma (PDAC) is highly heterogeneous, making its prognosis prediction difficult. The arachidonic acid (AA) cascade is involved in carcinogenesis. Therefore, the metabolic enzymes of the AA cascade consist of lipoxygenases (LOXs), phospholipase A2s (PLA2s), and cyclooxygenases (COXs) along with their metabolic products, including leukotrienes. Nevertheless, the prognostic potential of AA metabolism-associated PDAC has not been explored. Herein, the mRNA expression patterns and the matching clinical information of individuals with PDAC were abstracted from online data resources. We employed the LASSO Cox regression model to develop a multigene clinical signature in the TCGA queue.… More >

  • Open Access

    ARTICLE

    Organic Amendments Improve Plant Morpho-Physiology and Antioxidant Metabolism in Mitigating Drought Stress in Bread Wheat (Triticum aestivum L.)

    Taufika Islam Anee1,#, Md. Nur Nabi Islam1,#, Mohamed M. Hassan2, Abdul Awal Chowdhury Masud1, Md. Mahabub Alam1, Mirza Hasanuzzaman1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.9, pp. 1959-1972, 2022, DOI:10.32604/phyton.2022.021137 - 13 May 2022

    Abstract Due to the unpredictable climate change, drought stress is being considered as one of the major threats to crop production. Wheat (Triticum aestivum L. cv. BARI Gom-26) being a dry season crop frequently faces scarcity of water and results in a lower yield. Therefore, this experiment aims to explore the role of different organic amendments (OAs) in mitigating drought stress-induced damage. The pot experiment consisted of different organic amendments viz. compost, vermicompost and poultry manure @0.09 kg m−2 soil, biochar @2.5% w/w soil and chitosan @1% w/w soil which was imposed on the plants grown under both… More >

  • Open Access

    ARTICLE

    Response of Tomato Sugar and Acid Metabolism and Fruit Quality under Different High Temperature and Relative Humidity Conditions

    Yanjiao Zheng1, Zaiqiang Yang1,2,*, Tingting Wei1, Heli Zhao1

    Phyton-International Journal of Experimental Botany, Vol.91, No.9, pp. 2033-2054, 2022, DOI:10.32604/phyton.2022.019468 - 13 May 2022

    Abstract The combined stress of high temperature and high relative air humidity is one of the most serious agrometeorological disasters that restricts the production capacity of protected agriculture. However, there is little information about the precise interaction between them on tomato fruit quality. The objectives of this study were to explore the effects of the combined stress of high temperature and relative humidity on the sugar and acid metabolism and fruit quality of tomato fruits, and to determine the best relative air humidity for fruit quality under high temperature environments. Four temperature treatments (32°C, 35°C, 38°C,… More >

  • Open Access

    ARTICLE

    Proline and Oxidative Metabolism in Young Pecan Trees Associated with Sulphate Accumulation

    Dalila Jacqueline Escudero-Almanza1, Oscar Cruz-Alvarez1, Ofelia Adriana Hernández-Rodríguez1, Juan Luis Jacobo-Cuellar1, Esteban Sánchez-Chávez2, Pablo Preciado-Rángel3, Dámaris Leopoldina Ojeda-Barrios1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.6, pp. 1141-1152, 2022, DOI:10.32604/phyton.2022.019129 - 14 February 2022

    Abstract Pecan [Carya illinoinensis (Wangenh.) K. Koch.] is a deciduous tree whose fruits (nuts) are of high economic value and offer excellent nutritional benefits. However, soils high in sulphates can limit its growth and development. Working with 5-year-old trees of ‘Western Schley’ pecan grown in soils high in sulphates, the levels of proline and oxidative metabolism were recorded in the leaflets. Results showed that different levels of visible leaflet damage (‘sufficiency’, ‘low’, ‘moderate’ or ‘severe’) were associated with different levels of leaflet sulphates (mg kg−1): ‘sufficiency’ (≤40), ‘low’ (41–60), ‘moderate’ (61–80) and ‘severe’ (80–100). ‘Severe’ sulphate damage was… More >

  • Open Access

    ARTICLE

    Effects of Salt-Alkaline Stress on Carbohydrate Metabolism in Rice Seedlings

    Xiwen Shao1, Dongsheng Gai1, Dapeng Gao1, Yanqiu Geng1,*, Liying Guo1,2,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.4, pp. 745-759, 2022, DOI:10.32604/phyton.2022.018933 - 09 December 2021

    Abstract The aim of this study was to investigate carbohydrate metabolism in rice seedlings subjected to salt-alkaline stress. Two relatively salt-alkaline tolerant (Changbai 9) and sensitive (Jinongda 138) rice cultivars, grown hydroponically, were subjected to salt-alkaline stress via 50 mM of salt-alkaline solution. The carbohydrate content and the activities of metabolism-related enzymes in the leaves and roots were investigated. The results showed that the contents of sucrose, fructose, and glucose in the leaves and roots increased under salt-alkaline stress. Starch content increased in the leaves but decreased in the roots under salt-alkaline stress. The activities of More >

  • Open Access

    ARTICLE

    Global Lysine Acetylome Analysis of Flower Bud Development in Catalpa bungei

    Danlong Jing1,2, Nan Wang1, Nan Lu1, Guanzheng Qu3, Guolu Liang2, Wenjun Ma1, Shougong Zhang1,*, Junhui Wang1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.3, pp. 507-524, 2022, DOI:10.32604/phyton.2022.017644 - 26 October 2021

    Abstract Lysine acetylation, a reversible and dynamic post-translational modification, plays pivotal roles in regulating many biological processes in plants. However, the information of lysine acetylation during flower development of woody angiosperm remains unclear. Herein, we identified a total of 667 lysine acetylation sites in 467 proteins in flower buds of Catalpa Bungei. The acetylated proteins were mainly involved in the pathways of carbon metabolism, glycometabolism and oxidative phosphorylation. Using functional enrichment analysis, 61 and 13 acetylated proteins were involved in the glycometabolism and oxidative phosphorylation pathways, respectively. This suggests that lysine acetylated proteins play critical roles in… More >

Displaying 31-40 on page 4 of 72. Per Page