Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (50)
  • Open Access

    ARTICLE

    Optimized Two-Level Ensemble Model for Predicting the Parameters of Metamaterial Antenna

    Abdelaziz A. Abdelhamid1,3,*, Sultan R. Alotaibi2

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 917-933, 2022, DOI:10.32604/cmc.2022.027653

    Abstract Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation tools. In this paper, we propose a new approach for predicting the bandwidth of metamaterial antenna using a novel ensemble model. The proposed ensemble model is composed of two levels of regression models. The first level consists of three strong models namely, random forest, support vector regression, and light gradient boosting machine. Whereas the second level is based on the ElasticNet regression model, which receives the prediction results from… More >

  • Open Access

    ARTICLE

    A New Fuzzy Controlled Antenna Network Proposal for Small Satellite Applications

    Chafaa Hamrouni1,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4233-4248, 2022, DOI:10.32604/cmc.2022.023453

    Abstract This research contributes to small satellite system development based on electromagnetic modeling and an integrated meta-materials antenna networks design for multimedia transmission contents. It includes an adaptive nonsingular mode tracking control design for small satellites systems using fuzzy waveless antenna networks. By analyzing and modeling based on electromagnetic methods, propagation properties of guided waves from metallic structures with simple or complex forms charge partially or entirely by anisotropic materials such as metamaterials. We propose a system control rule to omit uncertainties, including the inevitable approximation errors resulting from the finite number of fuzzy signal power value basis functions in antenna… More >

  • Open Access

    ARTICLE

    Robust Prediction of the Bandwidth of Metamaterial Antenna Using Deep Learning

    Abdelaziz A. Abdelhamid1,3,*, Sultan R. Alotaibi2

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2305-2321, 2022, DOI:10.32604/cmc.2022.025739

    Abstract The design of microstrip antennas is a complex and time-consuming process, especially the step of searching for the best design parameters. Meanwhile, the performance of microstrip antennas can be improved using metamaterial, which results in a new class of antennas called metamaterial antenna. Several parameters affect the radiation loss and quality factor of this class of antennas, such as the antenna size. Recently, the optimal values of the design parameters of metamaterial antennas can be predicted using machine learning, which presents a better alternative to simulation tools and trial-and-error processes. However, the prediction accuracy depends heavily on the quality of… More >

  • Open Access

    ARTICLE

    Design and Analysis of Novel Antenna for Millimeter-Wave Communication

    Omar A. Saraereh*

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 413-422, 2022, DOI:10.32604/csse.2022.024202

    Abstract At present, the microwave frequency band bandwidth used for mobile communication is only 600 MHz. In 2020, the 5G mobile Communication required about 1 GHz of bandwidth, so people need to tap new spectrum resources to meet the development needs of mobile Internet traffic that will increase by 1,000 times in the next 10 years. Utilize the potentially large bandwidth (30∼300 GHz) of the millimeter wave frequency band to provide higher data rates is regarded as the potential development trend of the future wireless communication technology. A microstrip patch implementation approach based on electromagnetic coupling feeding is presented to increase the… More >

  • Open Access

    ARTICLE

    Triple-Band Metamaterial Inspired Antenna for Future Terahertz (THz) Applications

    Adel Y. I. Ashyap1, S. Alamri2, S. H. Dahlan1,*, Z. Z. Abidin3, M. Inam Abbasi4, Huda A. Majid2, M. R. Kamarudin1, Y. A. Al-Gumaei5, M. Hashim Dahri6

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1071-1087, 2022, DOI:10.32604/cmc.2022.025636

    Abstract For future healthcare in the terahertz (THz) band, a triple-band microstrip planar antenna integrated with metamaterial (MTM) based on a polyimide substrate is presented. The frequencies of operation are 500, 600, and 880 GHz. The triple-band capability is accomplished by etching metamaterial on the patch without affecting the overall antenna size. Instead of a partial ground plane, a full ground plane is used as a buffer to shield the body from back radiation emitted by the antenna. The overall dimension of the proposed antenna is 484 × 484 μm2. The antenna's performance is investigated based on different crucial factors, and excellent results are… More >

  • Open Access

    ARTICLE

    Optimized Ensemble Algorithm for Predicting Metamaterial Antenna Parameters

    El-Sayed M. El-kenawy1,2, Abdelhameed Ibrahim3,*, Seyedali Mirjalili4,5, Yu-Dong Zhang6, Shaima Elnazer7,8, Rokaia M. Zaki9,10

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4989-5003, 2022, DOI:10.32604/cmc.2022.023884

    Abstract Metamaterial Antenna is a subclass of antennas that makes use of metamaterial to improve performance. Metamaterial antennas can overcome the bandwidth constraint associated with tiny antennas. Machine learning is receiving a lot of interest in optimizing solutions in a variety of areas. Machine learning methods are already a significant component of ongoing research and are anticipated to play a critical role in today's technology. The accuracy of the forecast is mostly determined by the model used. The purpose of this article is to provide an optimal ensemble model for predicting the bandwidth and gain of the Metamaterial Antenna. Support Vector… More >

  • Open Access

    ARTICLE

    Double-E-Triple-H-Shaped NRI-Metamaterial for Dual-Band Microwave Sensing Applications

    Shafayat Hossain1, Md. Iquebal Hossain Patwary1, Sikder Sunbeam Islam1, Sultan Mahmud1,2, Norbahiah Binti Misran2, Ali F. Almutairi3, Mohammad Tariqul Islam2,*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5817-5836, 2022, DOI:10.32604/cmc.2022.022042

    Abstract This paper presents a new Double-E-Triple-H-Shaped NRI (negative refractive index) metamaterial (MM) for dual-band microwave sensing applications. Here, a horizontal H-shaped metal structure is enclosed by two face-to-face E-shaped metal structures. This double-E-H-shaped design is also encased by two vertical H-shaped structures along with some copper links. Thus, the Double-E-Triple-H-Shaped configuration is developed. Two popular substrate materials of Rogers RO 3010 and FR-4 were adopted for analyzing the characteristics of the unit cell. The proposed structure exhibits transmission resonance inside the S-band with NRI and ENG (Epsilon Negative) metamaterial properties, and inside the C-band with ENG and MNG (Mu Negative)… More >

  • Open Access

    ARTICLE

    Metamaterial-Based Compact Antenna with Defected Ground Structure for 5G and Beyond

    Md. Mushfiqur Rahman1,*, Md. Shabiul Islam1, Mohammad Tariqul Islam2, Samir Salem Al-Bawri3, Wong Hin Yong1

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2383-2399, 2022, DOI:10.32604/cmc.2022.022150

    Abstract In this paper, a unit cell of a single-negative metamaterial structure loaded with a meander line and defected ground structure (DGS) is investigated as the principle radiating element of an antenna. The unit cell antenna causes even or odd mode resonances similar to the unit cell structure depending on the orientation of the microstrip feed used to excite the unit cell. However, the orientation which gives low-frequency resonance is considered here. The unit cell antenna is then loaded with a meander line which is parallel to the split bearing side and connects the other two sides orthogonal to the split… More >

  • Open Access

    ARTICLE

    Computational Investigation of Multiband EMNZ Metamaterial Absorber for Terahertz Applications

    Ismail Hossain1, Md Samsuzzaman2, Mohd Hafiz Baharuddin3,*, Norsuzlin Binti Mohd Sahar1, Mandeep Singh Jit Singh1, Mohammad Tariqul Islam3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3905-3920, 2022, DOI:10.32604/cmc.2022.022027

    Abstract This study presents an Epsilon Mu near-zero (EMNZ) nanostructured metamaterial absorber (NMMA) for visible regime applications. The resonator and dielectric layers are made of tungsten (W) and quartz (fused), where the working band is expanded by changing the resonator layer's design. Due to perfect impedance matching with plasmonic resonance characteristics, the proposed NMMA structure is achieved an excellent absorption of 99.99% at 571 THz, 99.50% at 488.26 THz, and 99.32% at 598 THz frequencies. The absorption mechanism is demonstrated by the theory of impedance, electric field, and power loss density distributions, respectively. The geometric parameters are explored and analyzed to… More >

  • Open Access

    ARTICLE

    Inkjet Printed Metamaterial Loaded Antenna for WLAN/WiMAX Applications

    Farhad Bin Ashraf1, Touhidul Alam2,*, Md Tarikul Islam3, Mandeep Jit Singh3, Norbahiah Binti Misran3, Mohammad Tariqul Islam3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2271-2284, 2022, DOI:10.32604/cmc.2022.021751

    Abstract In this paper, the design and performance analysis of an Inkjet-printed metamaterial loaded monopole antenna is presented for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. The proposed metamaterial structure consists of two layers, one is rectangular tuning fork-shaped antenna, and another layer is an inkjet-printed metamaterial superstate. The metamaterial layer is designed using four split-ring resonators (SRR) with an H-shaped inner structure to achieve negative-index metamaterial properties. The metamaterial structure is fabricated on low-cost photo paper substrate material using a conductive ink-based inkjet printing technique, which achieved dual negative refractive index bands of 2.25–4.25… More >

Displaying 11-20 on page 2 of 50. Per Page