Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    A Modified-Simplified MPPT Technique for Three-Phase Single-State Grid-Connected PV Systems

    Anuchit Aurairat, Boonyang Plangklang*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2375-2395, 2022, DOI:10.32604/cmc.2022.025122 - 29 March 2022

    Abstract Nowadays, the single state inverter for the grid-connected photovoltaic (PV) systems is becoming more and more popular as they can reduce circuit complexity resulting in less power losses of the inverter. This paper focuses on the use of model predictive control (MPC) to control a 3-phase and 2-level single-state grid-connected inverter in order to regulate the PV maximum power point (MPP). The algorithm of MPC scheme was done to measure the simultaneous current signal including predicting the next sampling current flow. The reference current (Id*) was used to control the distribution of electrical power from the… More >

  • Open Access

    ARTICLE

    Model Predictive Control of H7 Transformerless Inverter Powered by PV

    Ibrahim Atawi1, Sherif Zaid1,2,3,*

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 449-469, 2022, DOI:10.32604/iasc.2022.019959 - 03 September 2021

    Abstract Transformerless inverters have become an important integration of the modern photovoltaic (PV) grid-tied systems. Unfortunately, it has a general safety problem regarding the earth leakage current that must be less than the recommended standards. Lately, the H7 transformerless inverter, which is a three-phase inverter with an additional switch on the DC side, is introduced to mitigate the earth leakage current. Different modulation techniques and controllers are proposed to optimize its performance. This paper proposed the application of model predictive control (MPC) to grid-connected H7 transformerless inverter supplied by the PV power system. In modeling the… More >

  • Open Access

    ARTICLE

    FCS-MPC Strategy for PV Grid-Connected Inverter Based on MLD Model

    Xiaojuan Lu, Qingbo Zhang*

    Energy Engineering, Vol.118, No.6, pp. 1729-1740, 2021, DOI:10.32604/EE.2021.014938 - 10 September 2021

    Abstract In the process of grid-connected photovoltaic power generation, there are high requirements for the quality of the power that the inverter breaks into the grid. In this work, to improve the power quality of the grid-connected inverter into the grid, and the output of the system can meet the grid-connected requirements more quickly and accurately, we exhibit an approach toward establishing a mixed logical dynamical (MLD) model where logic variables were introduced to switch dynamics of the single-phase photovoltaic inverters. Besides, based on the model, our recent efforts in studying the finite control set model More >

  • Open Access

    ARTICLE

    Mathematical Morphology-Based Artificial Technique for Renewable Power Application

    Buddhadeva Sahoo1,*, Sangram Keshari Routray2, Pravat Kumar Rout2, Mohammed M. Alhaider3

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1851-1875, 2021, DOI:10.32604/cmc.2021.018535 - 21 July 2021

    Abstract This paper suggests a combined novel control strategy for DFIG based wind power systems (WPS) under both nonlinear and unbalanced load conditions. The combined control approach is designed by coordinating the machine side converter (MSC) and the load side converter (LSC) control approaches. The proposed MSC control approach is designed by using a model predictive control (MPC) approach to generate appropriate real and reactive power. The MSC controller selects an appropriate rotor voltage vector by using a minimized optimization cost function for the converter operation. It shows its superiority by eliminating the requirement of transformation,… More >

  • Open Access

    ARTICLE

    Application of Model Predictive Control Based on Kalman Filter in Solar Collector Field of Solar Thermal Power Generation

    Xiaojuan Lu, Zeping Liang*

    Energy Engineering, Vol.118, No.4, pp. 1171-1183, 2021, DOI:10.32604/EE.2021.014724 - 31 May 2021

    Abstract There are two prominent features in the process of temperature control in solar collector field. Firstly, the dynamic model of solar collector field is nonlinear and complex, which needs to be simplified. Secondly, there are a lot of random and uncontrollable, measurable and unmeasurable disturbances in solar collector field. This paper uses Taylor formula and difference approximation method to design a dynamic matrix predictive control (DMC) by linearizing and discretizing the dynamic model of the solar collector field. In addition, the purpose of controlling the stability of the outlet solar field salt temperature is achieved More >

  • Open Access

    ARTICLE

    Application of Dynamic Programming Algorithm Based on Model Predictive Control in Hybrid Electric Vehicle Control Strategy

    Xiaokan Wang*, Qiong Wang

    Journal on Internet of Things, Vol.2, No.2, pp. 81-87, 2020, DOI:10.32604/jiot.2020.010225 - 14 September 2020

    Abstract A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle, but also effectively save fuel and reduce emissions. In this paper, the construction of model predictive control in hybrid electric vehicle is proposed. The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm. The simulation of hybrid electric vehicle is carried out under a specific working condition. The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably More >

  • Open Access

    ARTICLE

    Model Predictive Control for Nonlinear Energy Management of a Power Split Hybrid Electric Vehicle

    Dehua Shi1,4, Shaohua Wang1,2,*, Yingfeng Cai1, Long Chen1, ChaoChun Yuan1, ChunFang Yin3

    Intelligent Automation & Soft Computing, Vol.26, No.1, pp. 27-39, 2020, DOI:10.31209/2018.100000062

    Abstract Model predictive control (MPC), owing to the capability of dealing with nonlinear and constrained problems, is quite promising for optimization. Different MPC strategies are investigated to optimize HEV nonlinear energy management for better fuel economy. Based on Bellman’s principle, dynamic programming is firstly used in the limited horizon to obtain optimal solutions. By considering MPC as a nonlinear programming problem, sequential quadratic programming (SQP) is used to obtain the descent directions of control variables and the current control input is further derived. To reduce computation and meet the requirements of real-time control, the nonlinear model More >

  • Open Access

    ARTICLE

    Consensus of Multi-Agent Systems with Input Constraints Based on Distributed Predictive Control Scheme

    Yueqi Hou1, Xiaolong Liang1, 2, Lyulong He1, Jiaqiang Zhang1, *, Jie Zhu3, Baoxiang Ren3

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1335-1349, 2020, DOI:10.32604/cmc.2020.06869

    Abstract Consensus control of multi-agent systems has attracted compelling attentions from various scientific communities for its promising applications. This paper presents a discrete-time consensus protocol for a class of multi-agent systems with switching topologies and input constraints based on distributed predictive control scheme. The consensus protocol is not only distributed but also depends on the errors of states between agent and its neighbors. We focus mainly on dealing with the input constraints and a distributed model predictive control scheme is developed to achieve stable consensus under the condition that both velocity and acceleration constraints are included More >

  • Open Access

    ARTICLE

    Reentry Attitude Tracking Control for Hypersonic Vehicle with Reaction Control Systems via Improved Model Predictive Control Approach

    Kai Liu1, 2, Zheng Hou2, *, Zhiyong She2, Jian Guo2

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.1, pp. 131-148, 2020, DOI:10.32604/cmes.2020.08124 - 01 January 2020

    Abstract This paper studies the reentry attitude tracking control problem for hypersonic vehicles (HSV) equipped with reaction control systems (RCS) and aerodynamic surfaces. The attitude dynamical model of the hypersonic vehicles is established, and the simplified longitudinal and lateral dynamic models are obtained, respectively. Then, the compound control allocation strategy is provided and the model predictive controller is designed for the pitch channel. Furthermore, considering the complicated jet interaction effect of HSV during RCS is working, an improved model predictive control approach is presented by introducing the online parameter estimation of the jet interaction coefficient for More >

  • Open Access

    ARTICLE

    Practical Application of Fractional Order Controllers to a Delay Thermal System

    Aymen Rhouma1,∗, Sami Hafsi2,†, Faouzi Bouani3

    Computer Systems Science and Engineering, Vol.34, No.5, pp. 305-313, 2019, DOI:10.32604/csse.2019.34.305

    Abstract This paper provides an application of Fractional Model Predictive Control (FMPC) and fractional-order Proportional Integral controller (P Iλ) on a thermal system with time delay.The first controller is based on Grünwald-Letnikov’s method to predict the future dynamic behavior of the system. This method consists in replacing the non-integer derivation operator of the adopted system representation by a discrete approximation. Therefore, this controller is developed on the basis of a fractional order model. However, the second controller is founded on an extended version of Hermite-Biehler theorem to determine the complete set stabilizing P Iλ parameters Experiment results onto More >

Displaying 11-20 on page 2 of 23. Per Page