Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (742)
  • Open Access

    REVIEW

    Microphysiological systems for modeling gut-organ interaction

    JONG HWAN SUNG*

    BIOCELL, Vol.48, No.8, pp. 1145-1153, 2024, DOI:10.32604/biocell.2024.050365

    Abstract The gut is a digestive organ that absorbs nutrients but also plays a vital role in immune response and defense against external compounds. The complex interaction between the gut microbiota and other organs including the immune system of the host has been known in various contexts, yielding the notion of ‘axes’ between the gut and other organs. While the presence of various gut-organ axes has been reported, the lack of adequate in vitro model systems for studying this interaction has restricted a deeper insight into these phenomena. Recently developed microphysiological systems (MPS), also known as organ-on-a-chip, More >

  • Open Access

    ARTICLE

    Exploring Capillary Fringe Flow: Quasilinear Modeling with Kirchhoff Transforms and Gardner Model

    Rachid Karra1,*, Abdelatif Maslouhi2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1611-1631, 2024, DOI:10.32604/fdmp.2024.048447

    Abstract Recent studies have underscored the significance of the capillary fringe in hydrological and biochemical processes. Moreover, its role in shallow waters is expected to be considerable. Traditionally, the study of groundwater flow has centered on unsaturated-saturated zones, often overlooking the impact of the capillary fringe. In this study, we introduce a steady-state two-dimensional model that integrates the capillary fringe into a 2-D numerical solution. Our novel approach employs the potential form of the Richards equation, facilitating the determination of boundaries, pressures, and velocities across different ground surface zones. We utilized a two-dimensional Freefem++ finite element model… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Thermocapillary Convection with Evaporation Induced by Boundary Heating

    O. N. Goncharova1, V. B. Bekezhanova2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1667-1686, 2024, DOI:10.32604/fdmp.2024.047959

    Abstract The dynamics of a bilayer system filling a rectangular cuvette subjected to external heating is studied. The influence of two types of thermal exposure on the flow pattern and on the dynamic contact angle is analyzed. In particular, the cases of local heating from below and distributed thermal load from the lateral walls are considered. The simulation is carried out within the frame of a two-sided evaporative convection model based on the Boussinesq approximation. A benzine–air system is considered as reference system. The variation in time of the contact angle is described for both heating More > Graphic Abstract

    Numerical Simulation of Thermocapillary Convection with Evaporation Induced by Boundary Heating

  • Open Access

    ARTICLE

    Personalized Lower Limb Gait Reconstruction Modeling Based on RFA-ProMP

    Chunhong Zeng, Kang Lu, Zhiqin He*, Qinmu Wu

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1441-1456, 2024, DOI:10.32604/cmc.2024.051551

    Abstract Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training in the early stage of rehabilitation for hemiplegic patients. The article utilizes the random forest algorithm to construct a gait parameter model, which maps the relationship between parameters such as height, weight, age, gender, and gait speed, achieving prediction of key points on the gait curve. To enhance prediction accuracy, an attention mechanism is introduced into the algorithm to focus more on the main features. Meanwhile, to ensure high similarity between the reconstructed gait curve and the normal one, More >

  • Open Access

    ARTICLE

    Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study

    Farman Saifi1,*, Mohd Javaid1, Abid Haleem1, S. M. Anas2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2747-2777, 2024, DOI:10.32604/cmes.2024.051490

    Abstract Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infrastructure systems and networks capable of withstanding blast loading. Initially centered on high-profile facilities such as embassies and petrochemical plants, this concern now extends to a wider array of infrastructures and facilities. Engineers and scholars increasingly prioritize structural safety against explosions, particularly to prevent disproportionate collapse and damage to nearby structures. Urbanization has further amplified the reliance on oil and gas pipelines, making them vital for urban life and prime targets for terrorist activities. Consequently, there is a growing imperative for computational… More >

  • Open Access

    ARTICLE

    Dynamic Hypergraph Modeling and Robustness Analysis for SIoT

    Yue Wan, Nan Jiang*, Ziyu Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3017-3034, 2024, DOI:10.32604/cmes.2024.051101

    Abstract The Social Internet of Things (SIoT) integrates the Internet of Things (IoT) and social networks, taking into account the social attributes of objects and diversifying the relationship between humans and objects, which overcomes the limitations of the IoT’s focus on associations between objects. Artificial Intelligence (AI) technology is rapidly evolving. It is critical to build trustworthy and transparent systems, especially with system security issues coming to the surface. This paper emphasizes the social attributes of objects and uses hypergraphs to model the diverse entities and relationships in SIoT, aiming to build an SIoT hypergraph generation… More >

  • Open Access

    ARTICLE

    Modeling of Leachate Propagation in a Municipal Solid Waste Landfill Foundation

    Nadezhda Zubova*, Andrey Ivantsov

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1407-1424, 2024, DOI:10.32604/fdmp.2024.051130

    Abstract The study deals with the numerical modeling of leachate distribution in the porous medium located under a municipal solid waste disposal landfill (MSWLF). The considered three-layer system is based on geological data obtained from field measurements. For simplicity, the problem is investigated by assuming a two-component approach. Nevertheless, the heat produced by landfills due to biological and chemical processes and the thermal diffusion mechanism contributing to pollution transport are taken into account. The numerical modeling of the propagation of leachate in the considered layered porous medium is implemented for parameters corresponding to natural soil and More >

  • Open Access

    ARTICLE

    Modeling and Analysis of OFDMA-NOMA-RA Protocol Considering Imperfect SIC in Multi-User Uplink WLANs

    Hailing Yang1, Suoping Li1,2,*, Duo Peng2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5273-5294, 2024, DOI:10.32604/cmc.2024.050869

    Abstract To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios, this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access (OFDMA) and non-orthogonal multiple access (NOMA). The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units (RUs), and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency. Based on the protocol designed in this paper, in the case of imperfect successive interference… More >

  • Open Access

    ARTICLE

    Joint Modeling of Citation Networks and User Preferences for Academic Tagging Recommender System

    Weiming Huang1,2, Baisong Liu1,*, Zhaoliang Wang1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4449-4469, 2024, DOI:10.32604/cmc.2024.050389

    Abstract In the tag recommendation task on academic platforms, existing methods disregard users’ customized preferences in favor of extracting tags based just on the content of the articles. Besides, it uses co-occurrence techniques and tries to combine nodes’ textual content for modelling. They still do not, however, directly simulate many interactions in network learning. In order to address these issues, we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations. Specifically, we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles… More >

  • Open Access

    REVIEW

    Progress in Mechanical Modeling of Implantable Flexible Neural Probes

    Xiaoli You1,2,3,, Ruiyu Bai1,2,3,4,, Kai Xue1,2,3, Zimo Zhang1,2,3, Minghao Wang5, Xuanqi Wang1,2,3, Jiahao Wang1,2,3, Jinku Guo1,2, Qiang Shen3, Honglong Chang3, Xu Long6,*, Bowen Ji1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1205-1231, 2024, DOI:10.32604/cmes.2024.049047

    Abstract Implanted neural probes can detect weak discharges of neurons in the brain by piercing soft brain tissue, thus as important tools for brain science research, as well as diagnosis and treatment of brain diseases. However, the rigid neural probes, such as Utah arrays, Michigan probes, and metal microfilament electrodes, are mechanically unmatched with brain tissue and are prone to rejection and glial scarring after implantation, which leads to a significant degradation in the signal quality with the implantation time. In recent years, flexible neural electrodes are rapidly developed with less damage to biological tissues, excellent… More >

Displaying 11-20 on page 2 of 742. Per Page