Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (809)
  • Open Access

    ARTICLE

    Finite Element Modeling of Thermo-Viscoelastoplastic Behavior of Dievar Alloy under Hot Rotary Swaging

    Josef Izák1,*, Marek Benč2, Petr Opěla2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3115-3133, 2025, DOI:10.32604/cmes.2025.059234 - 03 March 2025

    Abstract The paper deals with the FEM (Finite Element Method) simulation of rotary swaging of Dievar alloy produced by additive manufacturing technology Selective Laser Melting and conventional process. Swaging was performed at a temperature of 900°C. True flow stress-strain curves were determined for 600°C–900°C and used to construct a Hensel-Spittel model for FEM simulation. The process parameters, i.e., stress, temperature, imposed strain, and force, were investigation during the rotary swaging process. Firstly, the stresses induced during rotary swaging and the resistance of the material to deformation were investigated. The amount and distribution of imposed strain in… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Decision Support System for Predicting Pregnancy Risk Levels through Cardiotocograph (CTG) Imaging Analysis

    Ali Hasan Dakheel1,*, Mohammed Raheem Mohammed1, Zainab Ali Abd Alhuseen1, Wassan Adnan Hashim2,3

    Intelligent Automation & Soft Computing, Vol.40, pp. 195-220, 2025, DOI:10.32604/iasc.2025.061622 - 28 February 2025

    Abstract The prediction of pregnancy-related hazards must be accurate and timely to safeguard mother and fetal health. This study aims to enhance risk prediction in pregnancy with a novel deep learning model based on a Long Short-Term Memory (LSTM) generator, designed to capture temporal relationships in cardiotocography (CTG) data. This methodology integrates CTG signals with demographic characteristics and utilizes preprocessing techniques such as noise reduction, normalization, and segmentation to create high-quality input for the model. It uses convolutional layers to extract spatial information, followed by LSTM layers to model sequences for superior predictive performance. The overall More >

  • Open Access

    ARTICLE

    A Computational Modeling on Flow Bifurcation and Energy Distribution through a Loosely Bent Rectangular Duct with Vortex Structure

    Rabindra Nath Mondal1, Giulio Lorenzini2,*, Sidhartha Bhowmick1, Sreedham Chandra Adhikari3

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 249-278, 2025, DOI:10.32604/fhmt.2024.057990 - 26 February 2025

    Abstract The present study investigates the non-isothermal flow and energy distribution through a loosely bent rectangular duct using a spectral-based numerical approach over a wide range of the Dean number . Unlike previous research, this work offers novel insights by conducting a grid-point-specific velocity analysis and identifying new bifurcation structures. The study reveals how centrifugal and buoyancy forces interact to produce steady, periodic, and chaotic flow regimes significantly influencing heat transfer performance. The Newton-Raphson method is employed to explore four asymmetric steady branches, with vortex solutions ranging from 2- to 12 vortices. Unsteady flow characteristics are… More >

  • Open Access

    ARTICLE

    Modeling and Experimental Study of an Open Two-Phase Loop Driven by Osmotic Pressure and Capillary Force

    Hanli Bi1, Zheng Peng2, Chenpeng Liu3, Zhichao Jia1, Guoguang Li1, Yuandong Guo2, Hongxing Zhang1,*, Jianyin Miao1

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 55-70, 2025, DOI:10.32604/fhmt.2024.057933 - 26 February 2025

    Abstract As space technology advances, thermal control systems must effectively collect and dissipate heat from distributed, multi-source environments. Loop heat pipe is a highly reliable two-phase heat transfer component, but it has several limitations when addressing multi-source heat dissipation. Inspired by the transport and heat dissipation system of plants, large trees achieve stable and efficient liquid supply under the influence of two driving forces: capillary force during transpiration in the leaves (pull) and root pressure generated by osmotic pressure in the roots (push). The root pressure provides an effective liquid supply with a driving force exceeding… More >

  • Open Access

    ARTICLE

    Vector Extraction from Design Drawings for Intelligent 3D Modeling of Transmission Towers

    Ziqiang Tang1, Chao Han1, Hongwu Li1, Zhou Fan1, Ke Sun1, Yuntian Huang1, Yuhang Chen2, Chenxing Wang2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2813-2829, 2025, DOI:10.32604/cmc.2024.059094 - 17 February 2025

    Abstract Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as well as cumbersome and cluttered annotations on drawings, which interfere with the vector extraction heavily. In this article, the transmission tower containing the most complex structure is taken as the research object, and a semantic segmentation network is constructed to first segment the shape masks from the pixel-level drawings. Preprocessing and postprocessing are also proposed to ensure the stability and accuracy of the shape mask… More >

  • Open Access

    ARTICLE

    Study on the Fluid-Solid Coupling Seepage of the Deep Tight Reservoir Based on 3D Digital Core Modeling

    Haijun Yang1,2,*, Zhenzhong Cai1,2, Hui Zhang1,2, Chong Sun1,2, Jing Li3,*, Xiaoyu Meng3, Chen Liu4, Chengqiang Yang3

    Energy Engineering, Vol.122, No.2, pp. 537-560, 2025, DOI:10.32604/ee.2024.058747 - 31 January 2025

    Abstract Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures, thus the seepage characteristics are significant for enhancing oil production. This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone. A digital core of tight sandstone was built using Computed Tomography (CT) scanning, which was divided into matrix and pore phases by a pore equivalent diameter threshold. A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale. The results showed that increasing the confining pressure decreased porosity, permeability, and flow More >

  • Open Access

    ARTICLE

    The Association between Problematic Internet Use, Resilience, and Fatigue in First-Year Medical College Students in China: A Moderated Mediation Model

    Xiumei Chen1,2, Xiaobing Lu3,*, Yufu Ning1, Lifeng Wang1, Jeffrey H. Gamble4, Xianhe Chen5, Xingyong Jiang6, I-Hua Chen7,*, Peijin Lin8

    International Journal of Mental Health Promotion, Vol.27, No.1, pp. 51-63, 2025, DOI:10.32604/ijmhp.2024.057750 - 31 January 2025

    Abstract Background: Resilience is crucial for medical college students to thrive in the highly stressful environment of medical education. However, the prevalence of problematic internet use (PIU) in this population may negatively impact their resilience. This study investigated the influence of problematic online gaming (PG) and problematic social media use (PSMU) on the resilience of medical college students in China. Methods: A sample of 5075 first-year medical college students from four Chinese universities was studied. PG served as the independent variable, resilience as the dependent variable, fatigue as the mediator, and PSMU as the moderator. Structural… More >

  • Open Access

    ARTICLE

    Hybrid DF and SIR Forwarding Strategy in Conventional and Distributed Alamouti Space-Time Coded Cooperative Networks

    Slim Chaoui1,*, Omar Alruwaili1, Faeiz Alserhani1, Haifa Harrouch2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1933-1954, 2025, DOI:10.32604/cmes.2025.059346 - 27 January 2025

    Abstract In this paper, we propose a hybrid decode-and-forward and soft information relaying (HDFSIR) strategy to mitigate error propagation in coded cooperative communications. In the HDFSIR approach, the relay operates in decode-and-forward (DF) mode when it successfully decodes the received message; otherwise, it switches to soft information relaying (SIR) mode. The benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy alone. Closed-form expressions for the outage probability and symbol error rate (SER) are derived for coded cooperative communication with HDFSIR and energy-harvesting relays. Additionally,… More >

  • Open Access

    ARTICLE

    Biomechanical Study of Different Scaffold Designs for Reconstructing a Traumatic Distal Femur Defect Using Patient-Specific Computational Modeling

    Hsien-Tsung Lu1,2, Ching-Chi Hsu3,*, Qi-Quan Jian3, Wei-Ting Chen4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1883-1898, 2025, DOI:10.32604/cmes.2025.057675 - 27 January 2025

    Abstract Reconstruction of a traumatic distal femur defect remains a therapeutic challenge. Bone defect implants have been proposed to substitute the bone defect, and their biomechanical performances can be analyzed via a numerical approach. However, the material assumptions for past computational human femur simulations were mainly homogeneous. Thus, this study aimed to design and analyze scaffolds for reconstructing the distal femur defect using a patient-specific finite element modeling technique. A three-dimensional finite element model of the human femur with accurate geometry and material distribution was developed using the finite element method and material mapping technique. An… More > Graphic Abstract

    Biomechanical Study of Different Scaffold Designs for Reconstructing a Traumatic Distal Femur Defect Using Patient-Specific Computational Modeling

  • Open Access

    REVIEW

    Therapeutic actions of terpenes in neurodegenerative disorders and their correlations with the regulation and remodeling of the extracellular matrix

    RENATA DA SILVA CARNEIRO1, MATEUS HENRIQUE DE ALMEIDA DA COSTA1, JOSé ZILTON LIMA VERDE SANTOS1, VALDILéIA TEIXEIRA UCHôA2, LUCIANO DA SILVA LOPES3, ANDERSON NOGUEIRA MENDES1,*

    BIOCELL, Vol.49, No.1, pp. 109-125, 2025, DOI:10.32604/biocell.2024.058405 - 24 January 2025

    Abstract Neurodegenerative diseases are a major public health challenge, mainly affecting the elderly population and compromising their cognitive, sensory, and motor functions. Currently, available therapies focus on alleviating symptoms and slowing the progression of these conditions, but they do not yet offer a definitive cure. In this scenario, terpenes emerge as promising natural alternatives due to their neuroprotective properties. These compounds can reduce the formation of protein aggregates, neutralize free radicals, and inhibit pro-inflammatory enzymes, which are crucial factors in the development of neurodegenerative diseases. In addition, terpenes also play an important role in the… More >

Displaying 21-30 on page 3 of 809. Per Page