Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    Automatic and Robust Segmentation of Multiple Sclerosis Lesions with Convolutional Neural Networks

    H. M. Rehan Afzal1,2,*, Suhuai Luo1, Saadallah Ramadan1,2, Jeannette Lechner-Scott1,2,3, Mohammad Ruhul Amin3, Jiaming Li4, M. Kamran Afzal5

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 977-991, 2021, DOI:10.32604/cmc.2020.012448

    Abstract The diagnosis of multiple sclerosis (MS) is based on accurate detection of lesions on magnetic resonance imaging (MRI) which also provides ongoing essential information about the progression and status of the disease. Manual detection of lesions is very time consuming and lacks accuracy. Most of the lesions are difficult to detect manually, especially within the grey matter. This paper proposes a novel and fully automated convolution neural network (CNN) approach to segment lesions. The proposed system consists of two 2D patchwise CNNs which can segment lesions more accurately and robustly. The first CNN network is implemented to segment lesions accurately,… More >

  • Open Access


    Difference in Dynamic Gait Stability Between Sides in People with Multiple Sclerosis

    Meng-Wei Lin1, Feng Yang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 123-124, 2019, DOI:10.32604/mcb.2019.07343

    Abstract This article has no abstract. More >

  • Open Access


    Semi-automatic Segmentation of Multiple Sclerosis Lesion Based Active Contours Model and Variational Dirichlet Process

    Foued Derraz1, Laurent Peyrodie2, Antonio PINTI3, Abdelmalik Taleb-Ahmed3, Azzeddine Chikh4, Patrick Hautecoeur5

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.2, pp. 95-118, 2010, DOI:10.3970/cmes.2010.067.095

    Abstract We propose a new semi-automatic segmentation based Active Contour Model and statistic prior knowledge of Multiple Sclerosis (MS) Lesions in Regions Of Interest (RIO) within brain Magnetic Resonance Images(MRI). Reliable segmentation of MS lesion is important for at least three types of practical applications: pharmaceutical trails, making decision for drug treatment, patient follow-up. Manual segmentation of the MS lesions in brain MRI by well qualified experts is usually preferred. However, manual segmentation is hard to reproduce and can be highly cost and time consuming in the presence of large volume of MRI data. In other hand, automated segmentation methods are… More >

Displaying 1-10 on page 1 of 3. Per Page  

Share Link