Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (111)
  • Open Access


    Unconstrained Gender Recognition from Periocular Region Using Multiscale Deep Features

    Raqinah Alrabiah, Muhammad Hussain*, Hatim A. AboAlSamh

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2941-2962, 2023, DOI:10.32604/iasc.2023.030036

    Abstract The gender recognition problem has attracted the attention of the computer vision community due to its importance in many applications (e.g., surveillance and human–computer interaction [HCI]). Images of varying levels of illumination, occlusion, and other factors are captured in uncontrolled environments. Iris and facial recognition technology cannot be used on these images because iris texture is unclear in these instances, and faces may be covered by a scarf, hijab, or mask due to the COVID-19 pandemic. The periocular region is a reliable source of information because it features rich discriminative biometric features. However, most existing… More >

  • Open Access


    Edge Detection of COVID-19 CT Image Based on GF_SSR, Improved Multiscale Morphology, and Adaptive Threshold

    Shouming Hou1, Chaolan Jia1, Kai Li1, Liya Fan2, Jincheng Guo3,*, Mackenzie Brown4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.1, pp. 81-94, 2022, DOI:10.32604/cmes.2022.019006

    Abstract Edge detection is an effective method for image segmentation and feature extraction. Therefore, extracting weak edges with the inhomogeneous gray of Corona Virus Disease 2019 (COVID-19) CT images is extremely important. Multiscale morphology has been widely used in the edge detection of medical images due to its excellent boundary detection accuracy. In this paper, we propose a weak edge detection method based on Gaussian filtering and singlescale Retinex (GF_SSR), and improved multiscale morphology and adaptive threshold binarization (IMSM_ATB). As all the CT images have noise, we propose to remove image noise by Gaussian filtering. The… More >

  • Open Access


    Multi-Feature Fusion-Guided Multiscale Bidirectional Attention Networks for Logistics Pallet Segmentation

    Weiwei Cai1,2, Yaping Song1, Huan Duan1, Zhenwei Xia1, Zhanguo Wei1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1539-1555, 2022, DOI:10.32604/cmes.2022.019785

    Abstract In the smart logistics industry, unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans. Therefore, they play a critical role in smart warehousing, and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets. However, most current recognition algorithms are ineffective due to the diverse types of pallets, their complex shapes, frequent blockades in production environments, and changing lighting conditions. This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention (MFMBA) neural network for logistics… More >

  • Open Access


    Multi-Material and Multiscale Topology Design Optimization of Thermoelastic Lattice Structures

    Jun Yan1,2, Qianqian Sui1, Zhirui Fan1, Zunyi Duan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 967-986, 2022, DOI:10.32604/cmes.2022.017708

    Abstract This study establishes a multiscale and multi-material topology optimization model for thermoelastic lattice structures (TLSs) considering mechanical and thermal loading based on the Extended Multiscale Finite Element Method (EMsFEM). The corresponding multi-material and multiscale mathematical formulation have been established with minimizing strain energy and structural mass as the objective function and constraint, respectively. The Solid Isotropic Material with Penalization (SIMP) interpolation scheme has been adopted to realize micro-scale multi-material selection of truss microstructure. The modified volume preserving Heaviside function (VPHF) is utilized to obtain a clear 0/1 material of truss microstructure. Compared with the classic More >

  • Open Access


    Geometrically-Compatible Dislocation Pattern and Modeling of Crystal Plasticity in Body-Centered Cubic (BCC) Crystal at Micron Scale

    Yuxi Xie, Shaofan Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1419-1440, 2021, DOI:10.32604/cmes.2021.016756

    Abstract The microstructure of crystal defects, e.g., dislocation patterns, are not arbitrary, and it is possible that some of them may be related to the microstructure of crystals itself, i.e., the lattice structure. We call those dislocation patterns or substructures that are related to the corresponding crystal microstructure as the Geometrically Compatible Dislocation Patterns (GCDP). Based on this notion, we have developed a Multiscale Crystal Defect Dynamics (MCDD) to model crystal plasticity without or with minimum empiricism. In this work, we employ the multiscale dislocation pattern dynamics, i.e., MCDD, to simulate crystal plasticity in body-centered cubic (BCC) single More >

  • Open Access


    Effective Elastic Properties of 3-Phase Particle Reinforced Composites with Randomly Dispersed Elastic Spherical Particles of Different Sizes

    Yu-Fu Ko1,* , Jiann-Wen Woody Ju2

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1305-1328, 2021, DOI:10.32604/cmes.2021.017589

    Abstract Higher-order multiscale structures are proposed to predict the effective elastic properties of 3-phase particle reinforced composites by considering the probabilistic spherical particles spatial distribution, the particle interactions, and utilizing homogenization with ensemble volume average approach. The matrix material, spherical particles with radius a1, and spherical particles with radius a2, are denoted as the 0th phase, the 1st phase, and the 2nd phase, respectively. Particularly, the two inhomogeneity phases are different particle sizes and the same elastic material properties. Improved higher-order (in ratio of spherical particle sizes to the distance between the centers of spherical particles) bounds on effective More >

  • Open Access


    Multiscale Image Dehazing and Restoration: An Application for Visual Surveillance

    Samia Riaz1, Muhammad Waqas Anwar2, Irfan Riaz3, Hyun-Woo Kim4, Yunyoung Nam4,*, Muhammad Attique Khan5

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1-17, 2022, DOI:10.32604/cmc.2022.018268

    Abstract The captured outdoor images and videos may appear blurred due to haze, fog, and bad weather conditions. Water droplets or dust particles in the atmosphere cause the light to scatter, resulting in very limited scene discernibility and deterioration in the quality of the image captured. Currently, image dehazing has gained much popularity because of its usability in a wide variety of applications. Various algorithms have been proposed to solve this ill-posed problem. These algorithms provide quite promising results in some cases, but they include undesirable artifacts and noise in haze patches in adverse cases. Some… More >

  • Open Access


    Functionally Graded Cellular Structure Design Using the Subdomain Level Set Method with Local Volume Constraints

    Lianxiong Chen1, Hui Liu1,*, Xihua Chu1,2, Jiao Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1197-1218, 2021, DOI:10.32604/cmes.2021.016894

    Abstract Functional graded cellular structure (FGCS) usually shows superior mechanical behavior with low density and high stiffness. With the development of additive manufacturing, functional graded cellular structure gains its popularity in industries. In this paper, a novel approach for designing functionally graded cellular structure is proposed based on a subdomain parameterized level set method (PLSM) under local volume constraints (LVC). In this method, a subdomain level set function is defined, parameterized and updated on each subdomain independently making the proposed approach much faster and more cost-effective. Additionally, the microstructures on arbitrary two adjacent subdomains can be More >

  • Open Access


    Discontinuous-Galerkin-Based Analysis of Traffic Flow Model Connected with Multi-Agent Traffic Model

    Rina Okuyama1, Naoto Mitsume2, Hideki Fujii1, Hideaki Uchida1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 949-965, 2021, DOI:10.32604/cmes.2021.015773

    Abstract As the number of automobiles continues to increase year after year, the associated problem of traffic congestion has become a serious societal issue. Initiatives to mitigate this problem have considered methods for optimizing traffic volumes in wide-area road networks, and traffic-flow simulation has become a focus of interest as a technique for advance characterization of such strategies. Classes of models commonly used for traffic-flow simulations include microscopic models based on discrete vehicle representations, macroscopic models that describe entire traffic-flow systems in terms of average vehicle densities and velocities, and mesoscopic models and hybrid (or multiscale)… More >

  • Open Access


    Multiscale Topology Optimization using Subspace-based Model Reduction Method

    Yuan Zhu1, 2, Xin Ning1, 2, Yao Zhang1, 2, Yuwan Yin1, 2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 11-12, 2021, DOI:10.32604/icces.2021.08311

    Abstract High performance of the spacecraft structure is required in the special environment, it includes mechanical performance and operational performance, etc. When performing tasks, the spaceborne equipment requires high precision. Therefore, the design of lightweight, high stability and high reliability structure is essential for spacecraft. Topology optimization is widely used in structural design. However, there are some problems in the structure after macro topology optimization, such as checkerboard, local optimal solution and other phenomena. Despite a long calculation period, the obtained structure is often not smooth enough and hard to manufacture. Aiming to this issue, this… More >

Displaying 31-40 on page 4 of 111. Per Page