Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (194)
  • Open Access

    ARTICLE

    Mixed Convection of Nanofluids inside a Lid-Driven Cavity Heated by a Central Square Heat Source

    Fatima-zohra Bensouici1, *, Saadoun Boudebous2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 189-212, 2017, DOI:10.3970/fdmp.2017.013.189

    Abstract A numerical work has been performed to analyze the laminar mixed convection of nanofluids confined in a lid driven square enclosure with a central square and isotherm heat source. All the walls are cooled at constant temperature, and the top wall slides rightward at constant velocity. The simulations considered four types of nanofluids (Cu, Ag, Al2O3 and TiO2)-Water. The governing equations were solved using finite volume approach by the SIMPLER algorithm. Comparisons with previously published work are performed and found to be in good agreement. The influence of pertinent parameters such as Richardson number, size of… More >

  • Open Access

    ARTICLE

    Mixed Convection of a Nanofluid in a Vertical Anisotropic Porous Channel with Heated/Cooled Walls

    S. Slama1, H. Kahalerras1, B. Fersadou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 155-172, 2017, DOI:10.3970/fdmp.2017.013.155

    Abstract A numerical study is conducted to investigate the problem of mixed convection of a nanofluid in a vertical porous channel with one wall heated and the other cooled. The Darcy-Brinkman-Forchheimer model is used to describe the flow in the porous medium, considered as anisotropic in thermal conductivity, and the two-phase approach is adopted to simulate the motion of the nanofluid. The governing equations with the associated boundary conditions are solved by the finite volume method. The parametric study is focused on the variation of the Richardson number Ri, the heat fluxes ratio Rq, the Darcy number… More >

  • Open Access

    ARTICLE

    Lattice Boltzmann Method for Simulation of Nanoparticle Brownian Motion and Magnetic Field Effects on Free Convection in A Nanofluid-filled Open Cavity with Heat Generation/Absorption and Non Uniform Heating on the Left Solid Vertical Wall

    Mohamed Ammar Abbassi1, Bouchmel Mliki1, Ridha Djebali1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.2, pp. 59-83, 2017, DOI:10.3970/fdmp.2017.013.059

    Abstract This article reports a numerical study of nanoparticle Brownian motion and magnetic field effects by natural convection in a nanofluid-filled open cavity with non uniform boundary condition. Lattice Boltzmann Method (LBM) is used to simulate nanofluid flow and heat transfer. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo-Kleinstreuer-Li) correlation. In this model effect of Brownian motion on the effective thermal conductivity and effective viscosity is considered and examined. Simulations have been carried out for the pertinent parameters in the following ranges: Rayleigh number (Ra=103−106), Hartmann number (Ha=0-60), nanoparticle volume concentration (Φ=0–0.04) and More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER ON MHD NANOFLUID FLOW PAST A VERTICAL POROUS PLATE IN A ROTATING SYSTEM

    P.V. Satya Narayanaa,*, B.Venkateswarlub

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-10, 2016, DOI:10.5098/hmt.7.8

    Abstract In this paper, we study the chemical reaction and heat source effects on unsteady MHD free convection heat and mass transfer of a nanofluid flow past a semi-infinite flat plate in a rotating system. The plate is assumed to oscillate in time with steady frequency so that the solutions of the boundary layer are the similar oscillatory type. The innovation of the present work is closed-form analytic solutions are obtained for the momentum, energy and concentration equations. The influence of various parameters entering into the problem in the nanofluid velocity, temperature and concentration distributions, as More >

  • Open Access

    ARTICLE

    ASYMMETRIC FLOW OF A NANOFLUID BETWEEN EXPANDING OR CONTRACTING PERMEABLE WALLS WITH THERMAL RADIATION

    A. Vijayalakshmi, S. Srinivas*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-11, 2016, DOI:10.5098/hmt.7.10

    Abstract In the present study, the flow and heat transfer characteristics of a nanofluid in an expanding or contracting porous channel with different permeabilities in presence of thermal radiation are investigated. Analytical solutions for the flow variables are obtained by employing homotopy analysis method (HAM). Maxwell-Garnetts and Brinkman models are considered to calculate the thermal conductivity and the viscosity of nanofluid. In this investigation, we considered water and ethylene glycol as base fluids and silver ( Ag ), copper ( Cu ), titanium dioxide ( TiO2 ) and alumina ( Al2O3 ) as nanoparticles. The effects of various More >

  • Open Access

    ARTICLE

    MHD UNSTEADY FLOW OF A WILLIAMSON NANOFLUID IN A VERTICAL POROUS SPACE WITH OSCILLATING WALL TEMPERATURE

    D. Lourdu Immaculatea , R. Muthurajb,*, Anant Kant Shuklac, S. Srinivasd

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-14, 2016, DOI:10.5098/hmt.7.12

    Abstract This article aims to examine the MHD unsteady flow of Williamson nanofluid in a vertical channel filled with a porous material and oscillating wall temperature. The modeling of this problem is transformed to ordinary differential equations by collecting the non-periodic and periodic terms and then series solutions are obtained by using a powerful method known as the homotopy analysis method (HAM). The influence of involved parameters on heat and mass transfer characteristics of the fluid flow is computed and presented graphically. Further, variations on volume flow rate, coefficient of skin friction, heat transfer rate and More >

  • Open Access

    ARTICLE

    CFD MODELING OF NATURAL CONVECTION HEAT TRANSFER OF TIO2-WATER NANOFLUID IN A CYLINDRICAL CONTAINER

    Seyed Milad Mirabedin*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.17

    Abstract This work focuses on numerical validation of natural convection heat transfer of TiO2-water nanofluids in a cylindrical container using COMSOL. The main aim of this study is to examine different available approaches to calculate effective thermal conductivity and compare them with experimental data available in the literature. Simulation results show that for considered mixture, average Nusselt number decreases by increasing Rayleigh number and particle volume fraction. It has been found that only one model was able to represent similar trends for given particle volume fractions, compared to experimental results. More >

  • Open Access

    ARTICLE

    FREE CONVECTIVE MAGNETO-NANOFLUID FLOW PAST A MOVING VERTICAL PLATE IN THE PRESENCE OF RADIATION AND THERMAL DIFFUSION

    P. Chandra Reddy1, M.C. Raju1,*, G.S.S. Raju2, S.V.K. Varma3

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-11, 2016, DOI:10.5098/hmt.7.28

    Abstract The present analysis is focused on free convective heat and mass transfer characteristics of magneto-nanofluid flow through a moving vertical plate in the presence of thermal radiation and thermal diffusion. The water-based nanofluid containing copper is taken into consideration. A uniform magnetic field is applied perpendicular to the plate. The governing equations are solved by applying finite difference method. Numerical results of the fluid velocity, temperature, concentration, shear stress, rate of heat transfer and rate of mass transfer are presented graphically for different values of the physical parameters encountered in the problem. It is noticed More >

  • Open Access

    ARTICLE

    MAGNETOHYDRODYNAMIC(MHD) STAGNATION POINT FLOW AND HEAT TRANSFER OF UPPER-CONVECTED MAXWELL FLUID PAST A STRETCHING SHEET IN THE PRESENCE OF NANOPARTICLES WITH CONVECTIVE HEATING

    Wubshet Ibrahim

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-10, 2016, DOI:10.5098/hmt.7.4

    Abstract The study scrutinizes the effect of convective heating on magnetohydrodynamic (MHD) stagnation point flow and heat transfer of upper-convected Maxell fluid p ast a s tretching s heet i n t he p resence o f n anoparticles. T he m odel u sed i n t he s tudy i ncludes t he e ffect o f B rownian m otion and thermophoresis parameters. The non-linear governing equations and their boundary conditions are initially cast into dimensionless forms by similarity transformation. The resulting system of equations is then solved numerically using fourth order Runge-Kutta More >

  • Open Access

    ARTICLE

    Cooling of electronic components using nanofluids

    M. Zitoune1, 2 , O. Ourrad Meziani2, B. Meziani2, M. Adnani1, 2

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.1, pp. 33-55, 2016, DOI:10.3970/fdmp.2016.012.033

    Abstract A finite volume code used for detailed analysis of forced-convection flow in a horizontal channel containing eight heat sources simulating electronic components. The study deals the effect of variations of Reynolds number, the volume fraction and the good choice of type of nanoparticles added to the base fluid. The study shows that the rate of heat transfer increases with increasing Reynolds number and the volume fraction of nanofluids but not infinitely. The analysis of the dynamic and thermal field shows that the heat transfer is improved, with the increase in the Reynolds number and the More >

Displaying 171-180 on page 18 of 194. Per Page