Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,438)
  • Open Access

    ARTICLE

    Delay-dependent Stability of Recurrent Neural Networks with Time-varying Delay

    Guobao Zhanga,b, Jing-Jing Xionga,b, Yongming Huanga,b, Yong Lua,b,c, Ling Wanga,b

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 541-551, 2018, DOI:10.31209/2018.100000021

    Abstract This paper investigates the delay-dependent stability problem of recurrent neural networks with time-varying delay. A new and less conservative stability criterion is derived through constructing a new augmented Lyapunov-Krasovskii functional (LKF) and employing the linear matrix inequality method. A new augmented LKF that considers more information of the slope of neuron activation functions is developed for further reducing the conservatism of stability results. To deal with the derivative of the LKF, several commonly used techniques, including the integral inequality, reciprocally convex combination, and free-weighting matrix method, are applied. Moreover, it is found that the obtained More >

  • Open Access

    ARTICLE

    Numerical Solution of Linear Regression Based on Z-Numbers by Improved Neural Network

    Somayeh Ezadia, Tofigh Allahviranloob

    Intelligent Automation & Soft Computing, Vol.24, No.1, pp. 193-204, 2018, DOI:10.1080/10798587.2017.1328812

    Abstract In this article, the researcher at first focuses on introducing a linear regression based on the Z-number. In this regression, observations are real, but the coefficients and results of observations are unknown and in the form of Z-rating. Therefore, to estimate this type of regression, we have three distinct ways depending on different conditions dominating the problem. The three methods are a combination of artificial neural networks and fuzzy generalized improvements of the technique. Moreover the method of calculating the weights of the Z-number neural network has been mentioned and the stability of neural network More >

  • Open Access

    ARTICLE

    Numerical Solution of Fuzzy Equations with Z-numbers Using Neural Networks

    Raheleh Jafaria, Wen Yua, Xiaoou Lib

    Intelligent Automation & Soft Computing, Vol.24, No.1, pp. 151-158, 2018, DOI:10.1080/10798587.2017.1327154

    Abstract In this paper, the uncertainty property is represented by the Z-number as the coefficients of the fuzzy equation. This modification for the fuzzy equation is suitable for nonlinear system modeling with uncertain parameters. We also extend the fuzzy equation into dual type, which is natural for linearin-parameter nonlinear systems. The solutions of these fuzzy equations are the controllers when the desired references are regarded as the outputs. The existence conditions of the solutions (controllability) are proposed. Two types of neural networks are implemented to approximate solutions of the fuzzy equations with Z-number coefficients. More >

  • Open Access

    ARTICLE

    Comparisons of MFDFA, EMD and WT by Neural Network, Mahalanobis Distance and SVM in Fault Diagnosis of Gearboxes

    Jinshan Lina*, Chunhong Doub, Qianqian Wanga

    Sound & Vibration, Vol.52, No.2, pp. 11-15, 2018, DOI:10.32604/sv.2018.03653

    Abstract A method for gearbox fault diagnosis consists of feature extraction and fault identification. Many methods for feature extraction have been devised for exposing nature of vibration data of a defective gearbox. In addition, features extracted from gearbox vibration data are identified by various classifiers. However, existing literatures leave much to be desired in assessing performance of different combinatorial methods for gearbox fault diagnosis. To this end, this paper evaluated performance of several typical combinatorial methods for gearbox fault diagnosis by associating each of multifractal detrended fluctuation analysis (MFDFA), empirical mode decomposition (EMD) and wavelet transform More >

  • Open Access

    ARTICLE

    An Image Classification Method Based on Deep Neural Network with Energy Model

    Yang Yang1,*, Jinbao Duan1, Haitao Yu1, Zhipeng Gao1, Xuesong Qiu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.3, pp. 555-575, 2018, DOI:10.31614/cmes.2018.04249

    Abstract The development of deep learning has revolutionized image recognition technology. How to design faster and more accurate image classification algorithms has become our research interests. In this paper, we propose a new algorithm called stochastic depth networks with deep energy model (SADIE), and the model improves stochastic depth neural network with deep energy model to provide attributes of images and analysis their characteristics. First, the Bernoulli distribution probability is used to select the current layer of the neural network to prevent gradient dispersion during training. Then in the backpropagation process, the energy function is designed More >

  • Open Access

    ARTICLE

    AdaBoosting Neural Network for Short-Term Wind Speed Forecasting Based on Seasonal Characteristics Analysis and Lag Space Estimation

    Haijian Shao1, 2, Xing Deng1, 2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.3, pp. 277-293, 2018, DOI:10.3970/cmes.2018.114.277

    Abstract High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics. Randomness, intermittent and nonstationary usually cause the portion problem of the wind speed forecasting. Seasonal characteristics of wind speed means that its feature distribution is inconsistent. This typically results that the persistence of excitation for modeling can not be guaranteed, and may severely reduce the possibilities of high precise forecasting model. In this paper, we proposed two effective solutions to solve the problems caused by the randomness and seasonal characteristics of the wind speed. (1)… More >

  • Open Access

    ARTICLE

    Image Recognition of Breast Tumor Proliferation Level Based on Convolution Neural Network

    Junhao Yang1, Chunxiao Chen1,*, Qingyang Zang1, Jianfei Li1

    Molecular & Cellular Biomechanics, Vol.15, No.4, pp. 203-214, 2018, DOI:10.32604/mcb.2018.03824

    Abstract Pathological slide is increasingly applied in the diagnosis of breast tumors despite the issues of large amount of data, slow viewing and high subjectivity. To overcome these problems, a micrograph recognition method based on convolutional neural network is proposed for pathological slide of breast tumor. Combined with multi-channel threshold and watershed segmentation, a sample database including single cell, adhesive cell and invalid cell was established. Then, the convolution neural network with six layers is constructed, which has ability to classify the stained breast tumor cells with accuracy of more than 90%, and evaluate the proliferation More >

  • Open Access

    ARTICLE

    Tumor Cell Identification in Ki-67 Images on Deep Learning

    Ruihan Zhang1,2, Junhao Yang1, Chunxiao Chen1,*

    Molecular & Cellular Biomechanics, Vol.15, No.3, pp. 177-187, 2018, DOI:10.3970/mcb.2018.04292

    Abstract The proportion of cells staining for the nuclear antigen Ki-67 is an important predictive indicator for assessment of tumor cell proliferation and growth in routine pathological investigation. Instead of traditional scoring methods based on the experience of a trained laboratory scientist, deep learning approach can be automatically used to analyze the expression of Ki-67 as well. Deep learning based on convolutional neural networks (CNN) for image classification and single shot multibox detector (SSD) for object detection are used to investigate the expression of Ki-67 for assessment of biopsies from patients with breast cancer in this More >

  • Open Access

    ARTICLE

    A Computer-Aided Tuning Method for Microwave Filters by Combing T-S Fuzzy Neural Networks and Improved Space Mapping

    Shengbiao Wu1,2,3, Weihua Cao1,3,*, Can Liu1,3, Min Wu1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.3, pp. 433-453, 2018, DOI:10.31614/cmes.2018.03309

    Abstract A computer-aided tuning method that combines T-S fuzzy neural network (T-S FNN) and offers improved space mapping (SM) is presented in this study. This method consists of three main aspects. First, the coupling matrix is effectively extracted under the influence of phase shift and cavity loss after the initial tuning. Second, the surrogate model is realized by using a T-S FNN based on subspace clustering. Third, the mapping relationship between the actual and the surrogate models is established by the improved space mapping algorithm, and the optimal position of the tuning screws are found by More >

  • Open Access

    ARTICLE

    Neural Network-Based Second Order Reliability Method (NNBSORM) for Laminated Composite Plates in Free Vibration

    Mena E. Tawfik1, 2, Peter L. Bishay3, *, Edward A. Sadek1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.1, pp. 105-129, 2018, DOI:10.3970/cmes.2018.115.105

    Abstract Monte Carlo Simulations (MCS), commonly used for reliability analysis, require a large amount of data points to obtain acceptable accuracy, even if the Subset Simulation with Importance Sampling (SS/IS) methods are used. The Second Order Reliability Method (SORM) has proved to be an excellent rapid tool in the stochastic analysis of laminated composite structures, when compared to the slower MCS techniques. However, SORM requires differentiating the performance function with respect to each of the random variables involved in the simulation. The most suitable approach to do this is to use a symbolic solver, which renders… More >

Displaying 1401-1410 on page 141 of 1438. Per Page