Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,438)
  • Open Access

    ARTICLE

    An Information Optimizing Scheme for Damage Detection in Aircraft Structures

    He Xufei1, Deng Zhongmin2, Song Zhitao1

    Structural Durability & Health Monitoring, Vol.8, No.3, pp. 193-208, 2012, DOI:10.32604/sdhm.2012.008.193

    Abstract This paper describes an information optimizing scheme which is developed by integrating rough set and hierarchical data fusion. The novel structural damage indices are extracted using the information from different sources and then imported into probabilistic neural network (PNN) for classification and health assessment. In order to enhance the accuracy of diagnosis, results from separate PNN classification are fused to achieve comprehensive decision. Rough set is employed to decrease the spatial dimension of data. The predictive accuracy of optimizing scheme is demonstrated on a helicopter, taken as an example, with varied sensors, for multiple damage More >

  • Open Access

    ARTICLE

    Application of Artificial Neural Networks in Design of Steel Production Path

    Igor Grešovnik1,2, Tadej Kodelja1, Robert Vertnik2,3, Bojan Senčič3,2,3, Božidar Šarler1,2,4

    CMC-Computers, Materials & Continua, Vol.30, No.1, pp. 19-38, 2012, DOI:10.3970/cmc.2012.030.019

    Abstract Artificial neural networks (ANNs) are employed as an alternative to physical modeling for calculation of the relations between the production path process parameters (melting of scrap steel and alloying, continuous casting, hydrogen removal, reheating, rolling, and cooling on a cooling bed) and the final product mechanical properties (elongation, tensile strength, yield stress, hardness after rolling, necking) of steel semi products. They provide a much faster technique of response evaluation complementary to physical modeling. The Štore Steel company process path for production of steel bars is used as an example for demonstrating the approach. The applied… More >

  • Open Access

    ARTICLE

    Identification of Material Parameters for Structural Analyses

    W. Brocks1, I. Scheider2

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 189-212, 2010, DOI:10.3970/sdhm.2010.006.189

    Abstract Material parameters are adjustable coefficients in constitutive equations of the mechanical behaviour. Their identification requires a combined experimental and numerical approach, which results in a generally ill-posed inverse problem. Methods commonly applied in computational mechanics like optimisation and neural networks are addressed, and problems like sensitivity, uniqueness and stability are discussed. The cohesive model for describing ductile tearing is chosen as practical example to substantiate the general considerations. More >

  • Open Access

    ARTICLE

    Numerical Phenomenology: Virtual Testing of the Hierarchical Structure of a Bundle of Strands

    D.P. Boso1, M. Lefik2

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.3, pp. 319-338, 2010, DOI:10.3970/cmes.2010.055.319

    Abstract In this paper we study numerically the mechanical behaviour of wire ropes, particularly the influence of the geometrical configuration on the overall stiffness of the cables. Modelling the behaviour of a cable is a difficult problem, given the complexity of the geometrical layout, contact phenomena occurring among wires and possible yielding of the material. For this reason we pursue a "hierarchical beam approach", to substitute recursively, at each cabling stage, the bundle of wires with an equivalent single strand, having the characteristics computed from the previous level. We consider the first two levels of the… More >

  • Open Access

    ARTICLE

    Studies on Methodological Developments in Structural Damage Identification

    V. Srinivas1, Saptarshi Sasmal1, K. Ramanjaneyulu2

    Structural Durability & Health Monitoring, Vol.5, No.2, pp. 133-160, 2009, DOI:10.3970/sdhm.2009.005.133

    Abstract Many advances have taken place in the area of structural damage detection and localization using several approaches. Availability of cost-effective computing memory and speed, improvement in sensor technology including remotely monitored sensors, advancements in the finite element method, adaptation of modal testing and development of non-linear system identification methods bring out immense technical advancements that have contributed to the advancement of modal-based damage detection methods. Advances in modal-based damage detection methods over the last 20-30 years have produced new techniques for examining vibration data for identification of structural damage. In this paper, studies carried out… More >

  • Open Access

    ARTICLE

    Estimation of thermo-elasto-plastic properties of thin-film mechanical properties using MD nanoindentation simulations and an inverse FEM/ANN computational scheme

    D. S. Liu1, C.Y. Tsai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.39, No.1, pp. 29-48, 2009, DOI:10.3970/cmes.2009.039.029

    Abstract Utilizing a thin copper substrate for illustration purposes, this study presents a novel numerical method for extracting the thermo-mechanical properties of a thin-film. In the proposed approach, molecular dynamics (MD) simulations are performed to establish the load-displacement response of a thin copper substrate nanoindented at temperatures ranging from 300~1400 K. The load data are then input to an artificial neural network (ANN), trained using a finite element model (FEM), in order to extract the material constants of the copper substrate. The material constants are then used to construct the corresponding stress-strain curve, from which the… More >

  • Open Access

    ARTICLE

    Research on Activated Carbon Supercapacitors Electrochemical Properties Based on Improved PSO-BP Neural Network

    Xiaoyi Liang1, Zhen Yang1,2, Xingsheng Gu3, Licheng Ling1

    CMC-Computers, Materials & Continua, Vol.13, No.2, pp. 135-152, 2009, DOI:10.3970/cmc.2009.013.135

    Abstract Supercapacitors, also called electrical double-layer capacitors (EDLCs), occupy a region between batteries and dielectric capacitors on the Ragone plot describing the relation between energy and power. BET specific surface area and specific capacitance are two important electrochemical property parameters for activated carbon EDLCs, which are usually tested by experimental method. However, it is misspent time to repeat lots of experiments for EDLCs' studies. In this investigation, we developed one theoretical model based on improved particle swarm optimization algorithm back propagation (PSO-BP) neural network (NN) to simulate and optimize BET specific surface area and specific capacitance. More >

  • Open Access

    ARTICLE

    Comparison of New Formulations for Martensite Start Temperature of Fe-Mn-Si Shape Memory Alloys Using Geneting Programming and Neural Networks

    CMC-Computers, Materials & Continua, Vol.10, No.1, pp. 65-96, 2009, DOI:10.3970/cmc.2009.010.065

    Abstract This work proposed an alternative formulation for the prediction of martensite start temperature (Ms) of Fe-Mn-Si shape memory alloys (SMAs) depending on the various compositions and heat treatment techniques by using Neural Network (NN) and genetic programming (GP) soft computing techniques. The training and testing patterns of the proposed NN and GP formulations are based on well established experimental results from the literature. The NN and GP based formulation results are compared with experimental results and found to be quite reliable with a very high correlation (R2=0.955 for GEP and 0.999 for NN). More >

  • Open Access

    ARTICLE

    Evaluation of Seismic Design Values in the Taiwan Building Code by Using Artificial Neural Network

    Tienfuan Kerh1,2, J.S. Lai1, D. Gunaratnam2, R. Saunders2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.1, pp. 1-12, 2008, DOI:10.3970/cmes.2008.026.001

    Abstract Taiwan frequently suffers from strong ground motion, and the current building code is essentially based on two seismic zones, A and B. The design value of horizontal acceleration for zone A is 0.33g, and the value for zone B is 0.23g. To check the suitability of these values, a series of actual earthquake records are considered for evaluating peak ground acceleration (PGA) for each of the zones by using neural network models. The input parameters are magnitude, epicenter distance, and focal depth for each of the checking stations, and the peak ground acceleration is calculated… More >

  • Open Access

    ARTICLE

    Identification of Materials Properties with the Help of Miniature Shear Punch Test Using Finite Element Method and Neural Networks

    Asif Husain1, M. Guniganti2, D. K. Sehgal2, R. K. Pandey2

    CMC-Computers, Materials & Continua, Vol.8, No.3, pp. 133-150, 2008, DOI:10.3970/cmc.2008.008.133

    Abstract This paper describes an approach to identify the mechanical properties i.e. fracture and yield strength of steels. The study involves the FE simulation of shear punch test for various miniature specimens thickness ranging from 0.20mm to 0.80mm for four different steels using ABAQUS code. The experimental method of the miniature shear punch test is used to determine the material response under quasi-static loading. The load vs. displacement curves obtained from the FE simulation miniature disk specimens are compared with the experimental data obtained and found in good agreement. The resulting data from the load vs.… More >

Displaying 1421-1430 on page 143 of 1438. Per Page