Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (84)
  • Open Access

    ARTICLE

    Generalized Finite Difference Method for Numerical Solutions of Density-driven Groundwater Flows

    Po-Wei Li1, Chia-Ming Fan1,2, Chun-Yu Chen1, Cheng-Yu Ku1

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.5, pp. 319-350, 2014, DOI:10.3970/cmes.2014.101.319

    Abstract A combination of the generalized finite difference method (GFDM), the implicit Euler method and the Newton-Raphson method is proposed to efficiently and accurately analyze the density-driven groundwater flows. In groundwater hydraulics, the problems of density-driven groundwater flows are usually difficult to be solved, since the mathematical descriptions are a system of time- and space-dependent nonlinear partial differential equations. In the proposed numerical scheme, the GFDM and the implicit Euler method were adopted for spatial and temporal discretizations of governing equations. The GFDM is a newly-developed meshless method and is truly free from time-consuming mesh generation… More >

  • Open Access

    ARTICLE

    On the Numerical Solution of the Laplace Equation with Complete and Incomplete Cauchy Data Using Integral Equations

    Christina Babenko1, Roman Chapko2, B. Tomas Johansson3

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.5, pp. 299-317, 2014, DOI:10.3970/cmes.2014.101.299

    Abstract We consider the numerical solution of the Laplace equations in planar bounded domains with corners for two types of boundary conditions. The first one is the mixed boundary value problem (Dirichlet-Neumann), which is reduced, via a single-layer potential ansatz, to a system of well-posed boundary integral equations. The second one is the Cauchy problem having Dirichlet and Neumann data given on a part of the boundary of the solution domain. This problem is similarly transformed into a system of ill-posed boundary integral equations. For both systems, to numerically solve them, a mesh grading transformation is More >

  • Open Access

    ARTICLE

    Legendre Polynomials Method for Solving a Class of Variable Order Fractional Differential Equation

    Lifeng Wang1, Yunpeng Ma1,2, Yongqiang Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.2, pp. 97-111, 2014, DOI:10.3970/cmes.2014.101.097

    Abstract In this paper, a numerical method based on the Legendre polynomials is presented for a class of variable order fractional differential equation. We adopt the Coimbra variable order fractional operator, which can be viewed as a Caputo-type definition. Three different kinds of operational matrixes with Legendre polynomials are derived. A truncated the Legendre polynomials series together with the products of several dependent matrixes are utilized to reduce the variable order fractional differential equation to a system of algebraic equations. The solution of this system gives the approximation solution for the truncated limited n. An error More >

  • Open Access

    ARTICLE

    Numerical Solution of System of N–Coupled Nonlinear Schrödinger Equations via Two Variants of the Meshless Local Petrov–Galerkin (MLPG) Method

    M. Dehghan1, M. Abbaszadeh2, A. Mohebbi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.5, pp. 399-444, 2014, DOI:10.3970/cmes.2014.100.399

    Abstract In this paper three numerical techniques are proposed for solving the system of N-coupled nonlinear Schrödinger (CNLS) equations. Firstly, we obtain a time discrete scheme by approximating the first-order time derivative via the forward finite difference formula, then for obtaining a full discretization scheme, we use the Kansa’s approach to approximate the spatial derivatives via radial basis functions (RBFs) collocation methodology. We introduce the moving least squares (MLS) approximation and radial point interpolation method (RPIM) with their shape functions, separately. It should be noted that the shape functions of RPIM unlike the shape functions of the… More >

  • Open Access

    ARTICLE

    INVESTIGATION OF PARTICULAR FEATURES OF THE NUMERICAL SOLUTION OF AN EVAPORATING THIN FILM IN A CHANNEL

    Greg Ball, John Polansky, Tarik Kaya*

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-9, 2013, DOI:10.5098/hmt.v4.1.3002

    Abstract The fluid flow and heat transfer in an evaporating extended meniscus are numerically studied. Continuity, momentum, energy equations and the Kelvin-Clapeyron model are used to develop a third order, non-linear ordinary differential equation which governs the evaporating thin film. It is shown that the numerical results strongly depend on the choice of the accommodation coefficient and Hamaker constant as well as the initial perturbations. Therefore, in the absence of experimentally verified values, the numerical solutions should be considered as qualitative at best. It is found that the numerical results produce negative liquid pressures under certain More >

  • Open Access

    ARTICLE

    Operational Matrix Method for Solving Variable Order Fractional Integro-differential Equations

    Mingxu Yi1, Jun Huang1, Lifeng Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.5, pp. 361-377, 2013, DOI:10.3970/cmes.2013.096.361

    Abstract In this paper, operational matrix method based upon the Bernstein polynomials is proposed to solve the variable order fractional integro-differential equations in the Caputo derivative sense. We derive the Bernstein polynomials operational matrix of fractional order integration and introduce the product operational matrix of Bernstein polynomials. A truncated the Bernstein polynomials series together with the polynomials operational matrix are utilized to reduce the variable order fractional integro-differential equations to a system of algebraic equations. Only a small number of Bernstein polynomials are needed to obtain a satisfactory result. Some examples are included to demonstrate the More >

  • Open Access

    ARTICLE

    Numerical Solutions for Free Vibration Analysis of Thick Square Plates by the BEM

    W.L.A. Pereira1, V.J. Karam2, J.A.M. Carrer3, C.S.G. Monteiro1, W.J. Mansur1

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.2, pp. 117-130, 2013, DOI:10.3970/cmes.2013.096.117

    Abstract In this work, the BEM is applied to obtain the numerical solutions for free vibration analysis of thick square plates with two edges simply supported or clamped, and the other two edges free. A formulation based on Reissner’s theory is used here, which includes the contribution of the additional translational inertia terms to the integral equation of displacements and internal forces. The boundary element method is used to discretize the space, where it is employed the static fundamental solution. In literature, the responses for the kind of problem addressed here are very important in the More >

  • Open Access

    ARTICLE

    Numerical Algorithm to Solve Fractional Integro-differential Equations Based on Operational Matrix of Generalized Block Pulse Functions

    Yunpeng Ma1, Lifeng Wang1, Zhijun Meng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.1, pp. 31-47, 2013, DOI:10.3970/cmes.2013.096.031

    Abstract In this paper, we propose a numerical algorithm for solving linear and nonlinear fractional integro-differential equations based on our constructed fractional order generalized block pulse functions operational matrix of integration. The linear and nonlinear fractional integro-differential equations are transformed into a system of algebraic equations by the matrix and these algebraic equations are solved through known computational methods. Further some numerical examples are shown to illustrate the accuracy and reliability of the proposed approach. Moreover, comparing the methodology with the known technique shows that our approach is more efficient and more convenient. More >

  • Open Access

    ARTICLE

    Wavelet operational matrix method for solving fractional integral and differential equations of Bratu-type

    Lifeng Wang1, Yunpeng Ma1, Zhijun Meng1, Jun Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.4, pp. 353-368, 2013, DOI:10.3970/cmes.2013.092.353

    Abstract In this paper, a wavelet operational matrix method based on the second kind Chebyshev wavelet is proposed to solve the fractional integral and differential equations of Bratu-type. The second kind Chebyshev wavelet operational matrix of fractional order integration is derived. A truncated second kind Chebyshev wavelet series together with the wavelet operational matrix is utilized to reduce the fractional integral and differential equations of Bratu-type to a system of nonlinear algebraic equations. The convergence and the error analysis of the method are also given. Two examples are included to verify the validity and applicability of More >

  • Open Access

    ARTICLE

    Numerical solution of fractional partial differential equations using Haar wavelets

    Lifeng Wang1, Zhijun Meng1, Yunpeng Ma1, Zeyan Wu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.4, pp. 269-287, 2013, DOI:10.3970/cmes.2013.091.269

    Abstract In this paper, we present a computational method for solving a class of fractional partial differential equations which is based on Haar wavelets operational matrix of fractional order integration. We derive the Haar wavelets operational matrix of fractional order integration. Haar wavelets method is used because its computation is sample as it converts the original problem into Sylvester equation. Finally, some examples are included to show the implementation and accuracy of the approach. More >

Displaying 41-50 on page 5 of 84. Per Page