Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (439)
  • Open Access

    ARTICLE

    A Model for Predicting the Erosion Rate Induced by the Use of a Selective Catalytic Reduction Denitrification Technology in Cement Kilns Flue Gas

    Yihua Gao1, Fuping Qian2,*, Yi Sun2, Yue Wu2, Shenghua Wu2, Jinli Lu1, Yunlong Han1, Naijin Huang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 1997-2011, 2023, DOI:10.32604/fdmp.2023.026373 - 04 April 2023

    Abstract Selective catalytic reduction (SCR) is a technology by which nitrogen oxides are converted with the aid of a catalyst into diatomic nitrogen and water. It is known that the catalyst can be easily eroded if a cement kiln with a high-dust content is considered. To understand this process, numerical simulations have been carried out considering a single catalyst channel in order to study the collision and erosion of fly ash and catalysts at meso scale. Based on a response surface methodology, the effects of five factors on the erosion rate have been studied, namely, the More > Graphic Abstract

    A Model for Predicting the Erosion Rate Induced by the Use of a Selective Catalytic Reduction Denitrification Technology in Cement Kilns Flue Gas

  • Open Access

    ARTICLE

    A Novel Method to Enhance the Inversion Speed and Precision of the NMR T2 Spectrum by the TSVD Based Linearized Bregman Iteration

    Yiguo Chen1,2,3,*, Congjun Feng1,2, Yonghong He3, Zhijun Chen3, Xiaowei Fan3, Chao Wang3, Xinmin Ge4

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2451-2463, 2023, DOI:10.32604/cmes.2023.021145 - 09 March 2023

    Abstract The low-field nuclear magnetic resonance (NMR) technique has been used to probe the pore size distribution and the fluid composition in geophysical prospecting and related fields. However, the speed and accuracy of the existing numerical inversion methods are still challenging due to the ill-posed nature of the first kind Fredholm integral equation and the contamination of the noises. This paper proposes a novel inversion algorithm to accelerate the convergence and enhance the precision using empirical truncated singular value decompositions (TSVD) and the linearized Bregman iteration. The L1 penalty term is applied to construct the objective More > Graphic Abstract

    A Novel Method to Enhance the Inversion Speed and Precision of the NMR T<sub>2</sub> Spectrum by the TSVD Based Linearized Bregman Iteration

  • Open Access

    ARTICLE

    Numerical Simulation of Low Cycle Fatigue Behavior of Ti2AlNb Alloy Subcomponents

    Yanju Wang1, Zhenyu Zhu2, Aixue Sha1, Wenfeng Hao3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2655-2676, 2023, DOI:10.32604/cmes.2023.025749 - 09 March 2023

    Abstract Many titanium alloy subcomponents are subjected to fatigue loading in aerospace engineering, resulting in fatigue failure. The fatigue behavior of Ti2AlNb alloy subcomponents was investigated based on the Seeger fatigue life theory and the improved Lemaitre damage evolution theory. Firstly, the finite element models of the standard openhole specimen and Y-section subcomponents have been established by ABAQUS. The damage model parameters were determined by fatigue tests, and the reliability of fatigue life simulation results of the Ti2AlNb alloy standard open-hole specimen was verified. Meanwhile, the fatigue life of Ti2AlNb alloy Y-section subcomponents was predicted. Under the same More >

  • Open Access

    ARTICLE

    Experimental and Numerical Analysis of the Influence of Microchannel Size and Structure on Boiling Heat Transfer

    Ningbo Guo, Xianming Gao*, Duanling Li, Jixing Zhang, Penghui Yin, Mengyi Hua

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 3061-3082, 2023, DOI:10.32604/cmes.2023.026657 - 09 March 2023

    Abstract Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted. The heat transfer coefficient and bubble generation process of three microchannel structures with a width of 80 μm and a depth of 40, 60, and 80 μm were compared during the boiling process, and the factors influencing bubble generation were studied. A visual test bench was built, and test substrates of different sizes were prepared using a micro-nano laser. During the test, the behavior characteristics of the bubbles on the More >

  • Open Access

    ARTICLE

    Simulation of the Production Performances of Horizontal Wells with a Fractured Shale Gas Reservoir

    Hongsha Xiao1, Ruihan Zhang2,*, Man Chen1, Cui Jing1, Shangjun Gao1, Chao Chen1, Huiyan Zhao1, Xin Huang2,*, Bo Kang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1803-1815, 2023, DOI:10.32604/fdmp.2023.026143 - 08 March 2023

    Abstract The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated. In particular, a micro-seismic cloud diagram is used to describe the fracture network, and accordingly, a production model is introduced based on a multi-scale flow mechanism. A finite volume method is then exploited for the integration of the model equations. The effects of apparent permeability, conductivity, Langmuir volume, and bottom hole pressure on gas well production are studied accordingly. The simulation results show that ignoring the micro-scale flow mechanism of the shale gas leads to underestimating the More > Graphic Abstract

    Simulation of the Production Performances of Horizontal Wells with a Fractured Shale Gas Reservoir

  • Open Access

    ARTICLE

    Effect of Particle Orientation on Heat Transfer in Arrays of Prolate Particles

    Romana Basit1, Xinyang Li1, Zheqing Huang1, Qiang Zhou1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1509-1526, 2023, DOI:10.32604/cmes.2023.025308 - 06 February 2023

    Abstract Direct Numerical Simulations have been carried out to study the forced convection heat transfer of flow through fixed prolate particles for a variety of aspect ratios ar = {5/4, 5/3, 5/1} with Reynolds number (Re) up to 100. Three variations of the solid volume fraction c = {0.1, 0.2, 0.3} with four Hermans orientation factors S = {−0.5, 0, 0.5, 1} are studied. It has been found that changes in S cause prominent variations in the Nusselt number. In general, Nusselt number increases with the decrease of S. For all three aspect ratios, the Nusselt number remains More > Graphic Abstract

    Effect of Particle Orientation on Heat Transfer in Arrays of Prolate Particles

  • Open Access

    ARTICLE

    Numerical Simulation of Fretting Fatigue Damage Evolution of Cable Wires Considering Corrosion and Wear Effects

    Ying Wang*, Zheng Yan, Yangyang Wu

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1339-1370, 2023, DOI:10.32604/cmes.2023.025830 - 06 February 2023

    Abstract In this paper, a numerical model of fretting fatigue analysis of cable wire and the fretting fatigue damage constitutive model considering the multi-axis effect were established, and the user material subroutine UMAT was written. Then, the constitutive model of wear morphology evolution of cable wire and the constitutive model of pitting evolution considering the mechanical-electrochemical effect were established, respectively. The corresponding subroutines UMESHMOTION_Wear and UMESHMOTION_Wear_Corrosion were written, and the fretting fatigue life was further predicted. The results show that the numerical simulation life obtained by the program in this paper has the same trend as… More > Graphic Abstract

    Numerical Simulation of Fretting Fatigue Damage Evolution of Cable Wires Considering Corrosion and Wear Effects

  • Open Access

    ARTICLE

    Geometrically Nonlinear Flutter Analysis Based on CFD/CSD Methods and Wind Tunnel Experimental Verification

    Changrong Zhang, Hongtao Guo, Li Yu, Binbin Lv, Hongya Xia*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1743-1758, 2023, DOI:10.32604/cmes.2023.025528 - 06 February 2023

    Abstract This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the high-precision computational fluid dynamics/computational structural dynamics methods. In the proposed method, the aerodynamic simulation was conducted based on computational fluid dynamics, and the structural model was established using the nonlinear finite element model and tangential stiffness matrix. First, the equilibrium position was obtained using the nonlinear static aeroelastic iteration. Second, the structural modal under a steady aerodynamic load was extracted. Finally, the generalized displacement time curve was obtained by coupling the unsteady aerodynamics and linearized structure motion equations. Moreover, if the… More > Graphic Abstract

    Geometrically Nonlinear Flutter Analysis Based on CFD/CSD Methods and Wind Tunnel Experimental Verification

  • Open Access

    ARTICLE

    Numerical Simulation about the Characteristics of the Store Released from the Internal Bay in Supersonic Flow

    Xiaohui Cheng1, Haiqing Si1,*, Yao Li1, Peihong Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1729-1742, 2023, DOI:10.32604/cmes.2023.022694 - 06 February 2023

    Abstract To understand the influence of the initial release conditions on the separation characteristics of the store and improve it under high Mach number (Ma = 4) flight conditions, the overset grid method and the Realizable turbulence model coupled with an equation with six degrees of freedom are used to simulate the store released from the internal bay. The motion trajectory and the attitude angle of the store separation under the conditions of different centroid, velocity, height and control measures are given by the calculated result. Through analysis, the position of the centroid will affect the separation of More >

  • Open Access

    ARTICLE

    Fluid-Dynamics Analysis and Structural Optimization of a 300 kW MicroGas Turbine Recuperator

    Weiting Jiang*, Tingni He*, Chongyang Wang, Weiguo Pan, Jiang Liu

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1447-1461, 2023, DOI:10.32604/fdmp.2023.025269 - 30 January 2023

    Abstract Computational Fluid Dynamics (CFD) is used here to reduce pressure loss and improve heat exchange efficiency in the recuperator associated with a gas turbine. First, numerical simulations of the high-temperature and low-temperature channels are performed and, the calculated results are compared with experimental data (to verify the reliability of the numerical method). Second, the flow field structure of the low-temperature side channel is critically analyzed, leading to the conclusion that the flow velocity distribution in the low-temperature side channel is uneven, and its resistance is significantly higher than that in the high-temperature side. Therefore, five More > Graphic Abstract

    Fluid-Dynamics Analysis and Structural Optimization of a 300 kW MicroGas Turbine Recuperator

Displaying 111-120 on page 12 of 439. Per Page